Merge pull request !4706 from Peilin/smoothL1Loss-fixtags/v0.7.0-beta
| @@ -18,47 +18,47 @@ | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| __global__ void SmoothL1LossKernel(const int input_size, const float sigma, const T *prediction, const T *target, | |||
| __global__ void SmoothL1LossKernel(const int input_size, const float beta, const T *prediction, const T *target, | |||
| T *loss) { | |||
| for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < input_size; i += blockDim.x * gridDim.x) { | |||
| T value = (prediction[i] - target[i]) > 0 ? (prediction[i] - target[i]) : (target[i] - prediction[i]); | |||
| if (value < sigma) { | |||
| loss[i] = static_cast<T>(0.5) * value * value; | |||
| T value = fabsf(prediction[i] - target[i]); | |||
| if (value < beta) { | |||
| loss[i] = 0.5 * value * value / beta; | |||
| } else { | |||
| loss[i] = value - static_cast<T>(0.5); | |||
| loss[i] = value - (0.5 * beta); | |||
| } | |||
| } | |||
| } | |||
| template <typename T> | |||
| void SmoothL1Loss(const int &input_size, const float &sigma, const T *prediction, const T *target, T *loss, | |||
| void SmoothL1Loss(const int &input_size, const float &beta, const T *prediction, const T *target, T *loss, | |||
| cudaStream_t stream) { | |||
| SmoothL1LossKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, sigma, prediction, target, loss); | |||
| SmoothL1LossKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, beta, prediction, target, loss); | |||
| } | |||
| template <typename T> | |||
| __global__ void SmoothL1LossGradKernel(const int input_size, const float sigma, const T *prediction, const T *target, | |||
| __global__ void SmoothL1LossGradKernel(const int input_size, const float beta, const T *prediction, const T *target, | |||
| const T *dloss, T *dx) { | |||
| for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < input_size; i += blockDim.x * gridDim.x) { | |||
| T value = prediction[i] - target[i]; | |||
| if (value > static_cast<T>(sigma)) { | |||
| if (value > beta) { | |||
| dx[i] = dloss[i]; | |||
| } else if (value < static_cast<T>(-sigma)) { | |||
| } else if (value < -beta) { | |||
| dx[i] = -dloss[i]; | |||
| } else { | |||
| dx[i] = value * dloss[i]; | |||
| dx[i] = (value / beta) * dloss[i]; | |||
| } | |||
| } | |||
| } | |||
| template <typename T> | |||
| void SmoothL1LossGrad(const int &input_size, const float &sigma, const T *prediction, const T *target, const T *dloss, | |||
| void SmoothL1LossGrad(const int &input_size, const float &beta, const T *prediction, const T *target, const T *dloss, | |||
| T *dx, cudaStream_t stream) { | |||
| SmoothL1LossGradKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, sigma, prediction, target, | |||
| SmoothL1LossGradKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, beta, prediction, target, | |||
| dloss, dx); | |||
| } | |||
| template void SmoothL1Loss(const int &input_size, const float &sigma, const float *prediction, const float *target, | |||
| float *loss, cudaStream_t stream); | |||
| template void SmoothL1LossGrad(const int &input_size, const float &sigma, const float *prediction, const float *target, | |||
| const float *dloss, float *dx, cudaStream_t stream); | |||
| template void SmoothL1Loss<float>(const int &input_size, const float &beta, const float *prediction, | |||
| const float *target, float *loss, cudaStream_t stream); | |||
| template void SmoothL1LossGrad<float>(const int &input_size, const float &beta, const float *prediction, | |||
| const float *target, const float *dloss, float *dx, cudaStream_t stream); | |||
| @@ -17,9 +17,9 @@ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SMOOTH_L1_LOSS_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SMOOTH_L1_LOSS_H_ | |||
| template <typename T> | |||
| void SmoothL1Loss(const int &input_size, const float &sigma, const T *prediction, const T *target, T *loss, | |||
| void SmoothL1Loss(const int &input_size, const float &beta, const T *prediction, const T *target, T *loss, | |||
| cudaStream_t stream); | |||
| template <typename T> | |||
| void SmoothL1LossGrad(const int &input_size, const float &sigma, const T *prediction, const T *target, const T *dloss, | |||
| void SmoothL1LossGrad(const int &input_size, const float &beta, const T *prediction, const T *target, const T *dloss, | |||
| T *dx, cudaStream_t stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SMOOTH_L1_LOSS_H_ | |||
| @@ -26,7 +26,7 @@ namespace kernel { | |||
| template <typename T> | |||
| class SmoothL1LossGpuKernel : public GpuKernel { | |||
| public: | |||
| SmoothL1LossGpuKernel() : input_size_(1), sigma_(1.0) {} | |||
| SmoothL1LossGpuKernel() : input_size_(1), beta_(1.0) {} | |||
| ~SmoothL1LossGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| @@ -39,7 +39,7 @@ class SmoothL1LossGpuKernel : public GpuKernel { | |||
| T *target = GetDeviceAddress<T>(inputs, 1); | |||
| T *loss = GetDeviceAddress<T>(outputs, 0); | |||
| SmoothL1Loss(input_size_, sigma_, prediction, target, loss, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| SmoothL1Loss(input_size_, beta_, prediction, target, loss, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| @@ -49,7 +49,7 @@ class SmoothL1LossGpuKernel : public GpuKernel { | |||
| input_size_ *= input_shape[i]; | |||
| } | |||
| sigma_ = GetAttr<float>(kernel_node, "sigma"); | |||
| beta_ = GetAttr<float>(kernel_node, "beta"); | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| @@ -63,7 +63,7 @@ class SmoothL1LossGpuKernel : public GpuKernel { | |||
| private: | |||
| size_t input_size_; | |||
| float sigma_; | |||
| float beta_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| @@ -26,7 +26,7 @@ namespace kernel { | |||
| template <typename T> | |||
| class SmoothL1LossGradGpuKernel : public GpuKernel { | |||
| public: | |||
| SmoothL1LossGradGpuKernel() : input_size_(1), sigma_(1.0) {} | |||
| SmoothL1LossGradGpuKernel() : input_size_(1), beta_(1.0) {} | |||
| ~SmoothL1LossGradGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| @@ -40,7 +40,7 @@ class SmoothL1LossGradGpuKernel : public GpuKernel { | |||
| T *dloss = GetDeviceAddress<T>(inputs, 2); | |||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||
| SmoothL1LossGrad(input_size_, sigma_, prediction, target, dloss, dx, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| SmoothL1LossGrad(input_size_, beta_, prediction, target, dloss, dx, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| @@ -50,7 +50,7 @@ class SmoothL1LossGradGpuKernel : public GpuKernel { | |||
| input_size_ *= input_shape[i]; | |||
| } | |||
| sigma_ = GetAttr<float>(kernel_node, "sigma"); | |||
| beta_ = GetAttr<float>(kernel_node, "beta"); | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| @@ -64,7 +64,7 @@ class SmoothL1LossGradGpuKernel : public GpuKernel { | |||
| private: | |||
| size_t input_size_; | |||
| float sigma_; | |||
| float beta_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| @@ -713,7 +713,7 @@ def get_bprop_top_kv2(self): | |||
| @bprop_getters.register(P.SmoothL1Loss) | |||
| def get_bprop_smooth_l1_loss(self): | |||
| """Grad definition for `SmoothL1Loss` operation.""" | |||
| grad = G.SmoothL1LossGrad(self.sigma) | |||
| grad = G.SmoothL1LossGrad(self.beta) | |||
| def bprop(prediction, target, out, dout): | |||
| dx = grad(prediction, target, dout) | |||
| @@ -1274,7 +1274,7 @@ class SmoothL1LossGrad(PrimitiveWithInfer): | |||
| """Computes gradient for prediction on SmoothL1Loss.""" | |||
| @prim_attr_register | |||
| def __init__(self, sigma=1.0): | |||
| def __init__(self, beta=1.0): | |||
| pass | |||
| def infer_shape(self, prediction, target, dloss): | |||
| @@ -1725,11 +1725,11 @@ class SmoothL1Loss(PrimitiveWithInfer): | |||
| Sets input prediction as `X`, input target as `Y`, output as `loss`. Then, | |||
| .. math:: | |||
| \text{SmoothL1Loss} = \begin{cases}0.5x^{2}, &if \left |x \right |\leq \text{sigma} \cr | |||
| \left |x \right|-0.5, &\text{otherwise}\end{cases} | |||
| \text{SmoothL1Loss} = \begin{cases} \frac{0.5 x^{2}}{\text{beta}, &if \left |x \right | < \text{beta} \cr | |||
| \left |x \right|-0.5 \text{beta}, &\text{otherwise}\end{cases} | |||
| Args: | |||
| sigma (float): A parameter used to control the point where the function will change from | |||
| beta (float): A parameter used to control the point where the function will change from | |||
| quadratic to linear. Default: 1.0. | |||
| Inputs: | |||
| @@ -1748,9 +1748,9 @@ class SmoothL1Loss(PrimitiveWithInfer): | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, sigma=1.0): | |||
| validator.check_value_type('sigma', sigma, [float], self.name) | |||
| validator.check('sigma', sigma, '', 0, Rel.GT, self.name) | |||
| def __init__(self, beta=1.0): | |||
| validator.check_value_type('beta', beta, [float], self.name) | |||
| validator.check('beta', beta, '', 0, Rel.GT, self.name) | |||
| self.init_prim_io_names(inputs=['prediction', 'target'], outputs=['output']) | |||
| def infer_shape(self, prediction, target): | |||
| @@ -21,25 +21,39 @@ import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import composite as C | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True) | |||
| def smoothl1loss(beta): | |||
| np.random.seed(42) | |||
| prediction = np.random.randn(20).astype(np.float32) | |||
| target = np.random.randn(20).astype(np.float32) | |||
| net = nn.SmoothL1Loss(beta) | |||
| return net(Tensor(prediction), Tensor(target)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_smoothl1loss(): | |||
| np.random.seed(42) | |||
| prediction = np.random.randn(20).astype(np.float32) | |||
| target = np.random.randn(20).astype(np.float32) | |||
| sigma = 1.0 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True) | |||
| epsilon = 1e-6 | |||
| net = nn.SmoothL1Loss(sigma) | |||
| loss = net(Tensor(prediction), Tensor(target)) | |||
| beta = 1.0 | |||
| loss = smoothl1loss(beta) | |||
| expect = [0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304, | |||
| 2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008, | |||
| 0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174, | |||
| 0.08826803, 1.109165] | |||
| assert np.allclose(loss.asnumpy(), expect) | |||
| diff = np.absolute(loss.asnumpy() - np.array(expect)) | |||
| assert(diff < epsilon).all() | |||
| beta = 1 / 9 | |||
| loss = smoothl1loss(beta) | |||
| expect = [0.9133791, 0.03446258, 0.5246048, 2.8922224, 0.2546738, 0.289504, | |||
| 2.674651, 0.33618113, 0.07560876, 0.7786982, 0.08273339, 2.2624524, | |||
| 0.19990394, 0.8000138, 2.4919074, 0.6030006, 1.1661391, 2.2183619, | |||
| 0.3646064, 1.5536094] | |||
| diff = np.absolute(loss.asnumpy() - np.array(expect)) | |||
| assert(diff < epsilon).all() | |||
| class Grad(nn.Cell): | |||
| @@ -53,20 +67,26 @@ class Grad(nn.Cell): | |||
| return gout | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_smoothl1loss_grad(): | |||
| def smoothl1loss_grad(beta): | |||
| np.random.seed(42) | |||
| prediction = np.random.randn(20).astype(np.float32) | |||
| target = np.random.randn(20).astype(np.float32) | |||
| sens = np.random.randn(20).astype(np.float32) | |||
| sigma = 1.0 | |||
| net = nn.SmoothL1Loss(sigma) | |||
| net = nn.SmoothL1Loss(beta) | |||
| grad = Grad(net) | |||
| dx = grad(Tensor(prediction), Tensor(target), Tensor(sens)) | |||
| return grad(Tensor(prediction), Tensor(target), Tensor(sens)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_smoothl1loss_grad(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True) | |||
| epsilon = 1e-6 | |||
| beta = 1.0 | |||
| dx = smoothl1loss_grad(beta) | |||
| dx1_expect = [-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093, | |||
| 0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229, | |||
| 0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995, | |||
| @@ -77,5 +97,23 @@ def test_smoothl1loss_grad(): | |||
| -0.04481723, -0.38508227, 0.17292616, 0.52333146, 1.0309995, | |||
| -0.61330026, -0.83921754, 0.3092124, -0.1391843, 0.9755451] | |||
| assert np.allclose(dx[0].asnumpy(), dx1_expect) | |||
| assert np.allclose(dx[1].asnumpy(), dx2_expect) | |||
| diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect)) | |||
| diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect)) | |||
| assert(diff1 < epsilon).all() | |||
| assert(diff2 < epsilon).all() | |||
| beta = 1 / 9 | |||
| dx = smoothl1loss_grad(beta) | |||
| dx1_expect = [-0.73846656, 0.13497104, -0.11564828, -0.30110368, -1.478522, | |||
| 0.7198442, -0.46063876, 1.0571222, 0.3436183, -1.7630402, | |||
| 0.32408398, 0.38508227, -0.676922, -0.6116763, -1.0309995, | |||
| 0.93128014, 0.83921754, -0.3092124, 0.33126342, -0.9755451] | |||
| dx2_expect = [0.73846656, -0.13497104, 0.11564828, 0.30110368, 1.478522, | |||
| -0.7198442, 0.46063876, -1.0571222, -0.3436183, 1.7630402, | |||
| -0.32408398, -0.38508227, 0.676922, 0.6116763, 1.0309995, | |||
| -0.93128014, -0.83921754, 0.3092124, -0.33126342, 0.9755451] | |||
| diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect)) | |||
| diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect)) | |||
| assert(diff1 < epsilon).all() | |||
| assert(diff2 < epsilon).all() | |||