Merge pull request !4314 from nhussain/clean_up_bindingstags/v0.7.0-beta
| @@ -32,45 +32,37 @@ namespace mindspore { | |||
| namespace dataset { | |||
| PYBIND_REGISTER(ConcatenateOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<ConcatenateOp, TensorOp, std::shared_ptr<ConcatenateOp>>( | |||
| *m, "ConcatenateOp", "Tensor operation concatenate tensors.") | |||
| .def(py::init<int8_t, std::shared_ptr<Tensor>, std::shared_ptr<Tensor>>(), py::arg("axis"), | |||
| py::arg("prepend").none(true), py::arg("append").none(true)); | |||
| (void)py::class_<ConcatenateOp, TensorOp, std::shared_ptr<ConcatenateOp>>(*m, "ConcatenateOp") | |||
| .def(py::init<int8_t, std::shared_ptr<Tensor>, std::shared_ptr<Tensor>>()); | |||
| })); | |||
| PYBIND_REGISTER(DuplicateOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<DuplicateOp, TensorOp, std::shared_ptr<DuplicateOp>>(*m, "DuplicateOp", | |||
| "Duplicate tensor.") | |||
| .def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| DuplicateOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<DuplicateOp, TensorOp, std::shared_ptr<DuplicateOp>>(*m, "DuplicateOp").def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER(FillOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<FillOp, TensorOp, std::shared_ptr<FillOp>>( | |||
| *m, "FillOp", "Tensor operation to return tensor filled with same value as input fill value.") | |||
| .def(py::init<std::shared_ptr<Tensor>>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| FillOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<FillOp, TensorOp, std::shared_ptr<FillOp>>(*m, "FillOp").def(py::init<std::shared_ptr<Tensor>>()); | |||
| })); | |||
| PYBIND_REGISTER(MaskOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<MaskOp, TensorOp, std::shared_ptr<MaskOp>>( | |||
| *m, "MaskOp", "Tensor mask operation using relational comparator") | |||
| (void)py::class_<MaskOp, TensorOp, std::shared_ptr<MaskOp>>(*m, "MaskOp") | |||
| .def(py::init<RelationalOp, std::shared_ptr<Tensor>, DataType>()); | |||
| })); | |||
| PYBIND_REGISTER(OneHotOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<OneHotOp, TensorOp, std::shared_ptr<OneHotOp>>( | |||
| *m, "OneHotOp", "Tensor operation to apply one hot encoding. Takes number of classes.") | |||
| .def(py::init<int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| OneHotOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<OneHotOp, TensorOp, std::shared_ptr<OneHotOp>>(*m, "OneHotOp").def(py::init<int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(PadEndOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<PadEndOp, TensorOp, std::shared_ptr<PadEndOp>>( | |||
| *m, "PadEndOp", "Tensor operation to pad end of tensor with a pad value.") | |||
| (void)py::class_<PadEndOp, TensorOp, std::shared_ptr<PadEndOp>>(*m, "PadEndOp") | |||
| .def(py::init<TensorShape, std::shared_ptr<Tensor>>()); | |||
| })); | |||
| PYBIND_REGISTER(SliceOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<SliceOp, TensorOp, std::shared_ptr<SliceOp>>(*m, "SliceOp", | |||
| "Tensor slice operation.") | |||
| (void)py::class_<SliceOp, TensorOp, std::shared_ptr<SliceOp>>(*m, "SliceOp") | |||
| .def(py::init<bool>()) | |||
| .def(py::init([](const py::list &py_list) { | |||
| std::vector<dsize_t> c_list; | |||
| @@ -105,17 +97,15 @@ PYBIND_REGISTER(SliceOp, 1, ([](const py::module *m) { | |||
| })); | |||
| PYBIND_REGISTER(ToFloat16Op, 1, ([](const py::module *m) { | |||
| (void)py::class_<ToFloat16Op, TensorOp, std::shared_ptr<ToFloat16Op>>( | |||
| *m, "ToFloat16Op", py::dynamic_attr(), | |||
| "Tensor operator to type cast float32 data to a float16 type.") | |||
| (void)py::class_<ToFloat16Op, TensorOp, std::shared_ptr<ToFloat16Op>>(*m, "ToFloat16Op", | |||
| py::dynamic_attr()) | |||
| .def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER(TypeCastOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<TypeCastOp, TensorOp, std::shared_ptr<TypeCastOp>>( | |||
| *m, "TypeCastOp", "Tensor operator to type cast data to a specified type.") | |||
| .def(py::init<DataType>(), py::arg("data_type")) | |||
| .def(py::init<std::string>(), py::arg("data_type")); | |||
| (void)py::class_<TypeCastOp, TensorOp, std::shared_ptr<TypeCastOp>>(*m, "TypeCastOp") | |||
| .def(py::init<DataType>()) | |||
| .def(py::init<std::string>()); | |||
| })); | |||
| PYBIND_REGISTER(RelationalOp, 0, ([](const py::module *m) { | |||
| @@ -52,7 +52,6 @@ | |||
| #include "minddata/dataset/kernels/image/random_vertical_flip_op.h" | |||
| #include "minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.h" | |||
| #include "minddata/dataset/kernels/image/rescale_op.h" | |||
| #include "minddata/dataset/kernels/image/resize_bilinear_op.h" | |||
| #include "minddata/dataset/kernels/image/resize_op.h" | |||
| #include "minddata/dataset/kernels/image/resize_with_bbox_op.h" | |||
| #include "minddata/dataset/kernels/image/soft_dvpp/soft_dvpp_decode_random_crop_resize_jpeg_op.h" | |||
| @@ -63,180 +62,133 @@ namespace mindspore { | |||
| namespace dataset { | |||
| PYBIND_REGISTER(AutoContrastOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<AutoContrastOp, TensorOp, std::shared_ptr<AutoContrastOp>>( | |||
| *m, "AutoContrastOp", "Tensor operation to apply autocontrast on an image.") | |||
| .def(py::init<float, std::vector<uint32_t>>(), py::arg("cutoff") = AutoContrastOp::kCutOff, | |||
| py::arg("ignore") = AutoContrastOp::kIgnore); | |||
| (void)py::class_<AutoContrastOp, TensorOp, std::shared_ptr<AutoContrastOp>>(*m, "AutoContrastOp") | |||
| .def(py::init<float, std::vector<uint32_t>>()); | |||
| })); | |||
| PYBIND_REGISTER(NormalizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<NormalizeOp, TensorOp, std::shared_ptr<NormalizeOp>>( | |||
| *m, "NormalizeOp", "Tensor operation to normalize an image. Takes mean and std.") | |||
| .def(py::init<float, float, float, float, float, float>(), py::arg("meanR"), py::arg("meanG"), | |||
| py::arg("meanB"), py::arg("stdR"), py::arg("stdG"), py::arg("stdB")); | |||
| (void)py::class_<NormalizeOp, TensorOp, std::shared_ptr<NormalizeOp>>(*m, "NormalizeOp") | |||
| .def(py::init<float, float, float, float, float, float>()); | |||
| })); | |||
| PYBIND_REGISTER(EqualizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<EqualizeOp, TensorOp, std::shared_ptr<EqualizeOp>>( | |||
| *m, "EqualizeOp", "Tensor operation to apply histogram equalization on images.") | |||
| .def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| EqualizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<EqualizeOp, TensorOp, std::shared_ptr<EqualizeOp>>(*m, "EqualizeOp").def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER(InvertOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<InvertOp, TensorOp, std::shared_ptr<InvertOp>>( | |||
| *m, "InvertOp", "Tensor operation to apply invert on RGB images.") | |||
| .def(py::init<>()); | |||
| (void)py::class_<InvertOp, TensorOp, std::shared_ptr<InvertOp>>(*m, "InvertOp").def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER(RescaleOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RescaleOp, TensorOp, std::shared_ptr<RescaleOp>>( | |||
| *m, "RescaleOp", "Tensor operation to rescale an image. Takes scale and shift.") | |||
| .def(py::init<float, float>(), py::arg("rescale"), py::arg("shift")); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| RescaleOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RescaleOp, TensorOp, std::shared_ptr<RescaleOp>>(*m, "RescaleOp").def(py::init<float, float>()); | |||
| })); | |||
| PYBIND_REGISTER(CenterCropOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<CenterCropOp, TensorOp, std::shared_ptr<CenterCropOp>>( | |||
| *m, "CenterCropOp", | |||
| "Tensor operation to crop and image in the middle. Takes height and width (optional)") | |||
| .def(py::init<int32_t, int32_t>(), py::arg("height"), py::arg("width") = CenterCropOp::kDefWidth); | |||
| .def(py::init<int32_t, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(MixUpBatchOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<MixUpBatchOp, TensorOp, std::shared_ptr<MixUpBatchOp>>( | |||
| *m, "MixUpBatchOp", "Tensor operation to mixup a batch of images") | |||
| .def(py::init<float>(), py::arg("alpha")); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| MixUpBatchOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<MixUpBatchOp, TensorOp, std::shared_ptr<MixUpBatchOp>>(*m, "MixUpBatchOp").def(py::init<float>()); | |||
| })); | |||
| PYBIND_REGISTER(CutMixBatchOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<CutMixBatchOp, TensorOp, std::shared_ptr<CutMixBatchOp>>( | |||
| *m, "CutMixBatchOp", "Tensor operation to cutmix a batch of images") | |||
| .def(py::init<ImageBatchFormat, float, float>(), py::arg("image_batch_format"), py::arg("alpha"), | |||
| py::arg("prob")); | |||
| .def(py::init<ImageBatchFormat, float, float>()); | |||
| })); | |||
| PYBIND_REGISTER(ResizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<ResizeOp, TensorOp, std::shared_ptr<ResizeOp>>( | |||
| *m, "ResizeOp", "Tensor operation to resize an image. Takes height, width and mode") | |||
| .def(py::init<int32_t, int32_t, InterpolationMode>(), py::arg("targetHeight"), | |||
| py::arg("targetWidth") = ResizeOp::kDefWidth, | |||
| py::arg("interpolation") = ResizeOp::kDefInterpolation); | |||
| (void)py::class_<ResizeOp, TensorOp, std::shared_ptr<ResizeOp>>(*m, "ResizeOp") | |||
| .def(py::init<int32_t, int32_t, InterpolationMode>()); | |||
| })); | |||
| PYBIND_REGISTER(ResizeWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<ResizeWithBBoxOp, TensorOp, std::shared_ptr<ResizeWithBBoxOp>>( | |||
| *m, "ResizeWithBBoxOp", "Tensor operation to resize an image. Takes height, width and mode.") | |||
| .def(py::init<int32_t, int32_t, InterpolationMode>(), py::arg("targetHeight"), | |||
| py::arg("targetWidth") = ResizeWithBBoxOp::kDefWidth, | |||
| py::arg("interpolation") = ResizeWithBBoxOp::kDefInterpolation); | |||
| (void)py::class_<ResizeWithBBoxOp, TensorOp, std::shared_ptr<ResizeWithBBoxOp>>(*m, | |||
| "ResizeWithBBoxOp") | |||
| .def(py::init<int32_t, int32_t, InterpolationMode>()); | |||
| })); | |||
| //#### | |||
| PYBIND_REGISTER(RandomAffineOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomAffineOp, TensorOp, std::shared_ptr<RandomAffineOp>>( | |||
| *m, "RandomAffineOp", "Tensor operation to apply random affine transformations on an image.") | |||
| .def(py::init<std::vector<float_t>, std::vector<float_t>, std::vector<float_t>, | |||
| std::vector<float_t>, InterpolationMode, std::vector<uint8_t>>(), | |||
| py::arg("degrees") = RandomAffineOp::kDegreesRange, | |||
| py::arg("translate_range") = RandomAffineOp::kTranslationPercentages, | |||
| py::arg("scale_range") = RandomAffineOp::kScaleRange, | |||
| py::arg("shear_ranges") = RandomAffineOp::kShearRanges, | |||
| py::arg("interpolation") = RandomAffineOp::kDefInterpolation, | |||
| py::arg("fill_value") = RandomAffineOp::kFillValue); | |||
| std::vector<float_t>, InterpolationMode, std::vector<uint8_t>>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomResizeWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomResizeWithBBoxOp, TensorOp, std::shared_ptr<RandomResizeWithBBoxOp>>( | |||
| *m, "RandomResizeWithBBoxOp") | |||
| .def(py::init<int32_t, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomPosterizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomPosterizeOp, TensorOp, std::shared_ptr<RandomPosterizeOp>>( | |||
| *m, "RandomPosterizeOp", "Tensor operation to apply random posterize operation on an image.") | |||
| .def(py::init<uint8_t, uint8_t>(), py::arg("min_bit") = RandomPosterizeOp::kMinBit, | |||
| py::arg("max_bit") = RandomPosterizeOp::kMaxBit); | |||
| (void)py::class_<RandomPosterizeOp, TensorOp, std::shared_ptr<RandomPosterizeOp>>(*m, | |||
| "RandomPosterizeOp") | |||
| .def(py::init<uint8_t, uint8_t>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| RandomResizeWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomResizeWithBBoxOp, TensorOp, std::shared_ptr<RandomResizeWithBBoxOp>>( | |||
| *m, "RandomResizeWithBBoxOp", | |||
| "Tensor operation to resize an image using a randomly selected interpolation. Takes height and width.") | |||
| .def(py::init<int32_t, int32_t>(), py::arg("targetHeight"), | |||
| py::arg("targetWidth") = RandomResizeWithBBoxOp::kDefTargetWidth); | |||
| })); | |||
| PYBIND_REGISTER(UniformAugOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>( | |||
| *m, "UniformAugOp", "Tensor operation to apply random augmentation(s).") | |||
| .def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("transforms"), | |||
| py::arg("NumOps") = UniformAugOp::kDefNumOps); | |||
| (void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>(*m, "UniformAugOp") | |||
| .def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(BoundingBoxAugmentOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>( | |||
| *m, "BoundingBoxAugmentOp", | |||
| "Tensor operation to apply a transformation on a random choice of bounding boxes.") | |||
| .def(py::init<std::shared_ptr<TensorOp>, float>(), py::arg("transform"), | |||
| py::arg("ratio") = BoundingBoxAugmentOp::kDefRatio); | |||
| })); | |||
| PYBIND_REGISTER(ResizeBilinearOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>( | |||
| *m, "ResizeBilinearOp", | |||
| "Tensor operation to resize an image using " | |||
| "Bilinear mode. Takes height and width.") | |||
| .def(py::init<int32_t, int32_t>(), py::arg("targetHeight"), | |||
| py::arg("targetWidth") = ResizeBilinearOp::kDefWidth); | |||
| *m, "BoundingBoxAugmentOp") | |||
| .def(py::init<std::shared_ptr<TensorOp>, float>()); | |||
| })); | |||
| PYBIND_REGISTER(DecodeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<DecodeOp, TensorOp, std::shared_ptr<DecodeOp>>( | |||
| *m, "DecodeOp", "Tensor operation to decode a jpg image") | |||
| (void)py::class_<DecodeOp, TensorOp, std::shared_ptr<DecodeOp>>(*m, "DecodeOp") | |||
| .def(py::init<>()) | |||
| .def(py::init<bool>(), py::arg("rgb_format") = DecodeOp::kDefRgbFormat); | |||
| .def(py::init<bool>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomHorizontalFlipOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomHorizontalFlipOp, TensorOp, std::shared_ptr<RandomHorizontalFlipOp>>( | |||
| *m, "RandomHorizontalFlipOp", "Tensor operation to randomly flip an image horizontally.") | |||
| .def(py::init<float>(), py::arg("probability") = RandomHorizontalFlipOp::kDefProbability); | |||
| *m, "RandomHorizontalFlipOp") | |||
| .def(py::init<float>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| RandomHorizontalFlipWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomHorizontalFlipWithBBoxOp, TensorOp, std::shared_ptr<RandomHorizontalFlipWithBBoxOp>>( | |||
| *m, "RandomHorizontalFlipWithBBoxOp", | |||
| "Tensor operation to randomly flip an image horizontally, while flipping bounding boxes.") | |||
| .def(py::init<float>(), py::arg("probability") = RandomHorizontalFlipWithBBoxOp::kDefProbability); | |||
| *m, "RandomHorizontalFlipWithBBoxOp") | |||
| .def(py::init<float>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomVerticalFlipOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomVerticalFlipOp, TensorOp, std::shared_ptr<RandomVerticalFlipOp>>( | |||
| *m, "RandomVerticalFlipOp", "Tensor operation to randomly flip an image vertically.") | |||
| .def(py::init<float>(), py::arg("probability") = RandomVerticalFlipOp::kDefProbability); | |||
| *m, "RandomVerticalFlipOp") | |||
| .def(py::init<float>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomVerticalFlipWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void) | |||
| py::class_<RandomVerticalFlipWithBBoxOp, TensorOp, std::shared_ptr<RandomVerticalFlipWithBBoxOp>>( | |||
| *m, "RandomVerticalFlipWithBBoxOp", | |||
| "Tensor operation to randomly flip an image vertically" | |||
| " and adjust bounding boxes.") | |||
| .def(py::init<float>(), py::arg("probability") = RandomVerticalFlipWithBBoxOp::kDefProbability); | |||
| *m, "RandomVerticalFlipWithBBoxOp") | |||
| .def(py::init<float>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| RandomCropOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomCropOp, TensorOp, std::shared_ptr<RandomCropOp>>(*m, "RandomCropOp", | |||
| "Gives random crop of specified size " | |||
| "Takes crop size") | |||
| (void)py::class_<RandomCropOp, TensorOp, std::shared_ptr<RandomCropOp>>(*m, "RandomCropOp") | |||
| .def( | |||
| py::init<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, BorderType, bool, uint8_t, uint8_t, uint8_t>(), | |||
| py::arg("cropHeight"), py::arg("cropWidth"), py::arg("padTop") = RandomCropOp::kDefPadTop, | |||
| py::arg("padBottom") = RandomCropOp::kDefPadBottom, py::arg("padLeft") = RandomCropOp::kDefPadLeft, | |||
| py::arg("padRight") = RandomCropOp::kDefPadRight, py::arg("borderType") = RandomCropOp::kDefBorderType, | |||
| py::arg("padIfNeeded") = RandomCropOp::kDefPadIfNeeded, py::arg("fillR") = RandomCropOp::kDefFillR, | |||
| py::arg("fillG") = RandomCropOp::kDefFillG, py::arg("fillB") = RandomCropOp::kDefFillB); | |||
| py::init<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, BorderType, bool, uint8_t, uint8_t, uint8_t>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| HwcToChwOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<HwcToChwOp, TensorOp, std::shared_ptr<HwcToChwOp>>(*m, "ChannelSwapOp").def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| RandomCropWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomCropWithBBoxOp, TensorOp, std::shared_ptr<RandomCropWithBBoxOp>>( | |||
| *m, "RandomCropWithBBoxOp", | |||
| "Gives random crop of given " | |||
| "size + adjusts bboxes " | |||
| "Takes crop size") | |||
| (void)py::class_<RandomCropWithBBoxOp, TensorOp, std::shared_ptr<RandomCropWithBBoxOp>>(*m, "RandomCropWithBBoxOp") | |||
| .def( | |||
| py::init<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, BorderType, bool, uint8_t, uint8_t, uint8_t>(), | |||
| py::arg("cropHeight"), py::arg("cropWidth"), py::arg("padTop") = RandomCropWithBBoxOp::kDefPadTop, | |||
| @@ -248,124 +200,64 @@ PYBIND_REGISTER( | |||
| py::arg("fillR") = RandomCropWithBBoxOp::kDefFillR, py::arg("fillG") = RandomCropWithBBoxOp::kDefFillG, | |||
| py::arg("fillB") = RandomCropWithBBoxOp::kDefFillB); | |||
| })); | |||
| PYBIND_REGISTER(CutOutOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<CutOutOp, TensorOp, std::shared_ptr<CutOutOp>>( | |||
| *m, "CutOutOp", | |||
| "Tensor operation to randomly erase a portion of the image. Takes height and width.") | |||
| .def(py::init<int32_t, int32_t, int32_t, bool, uint8_t, uint8_t, uint8_t>(), py::arg("boxHeight"), | |||
| py::arg("boxWidth"), py::arg("numPatches"), py::arg("randomColor") = CutOutOp::kDefRandomColor, | |||
| py::arg("fillR") = CutOutOp::kDefFillR, py::arg("fillG") = CutOutOp::kDefFillG, | |||
| py::arg("fillB") = CutOutOp::kDefFillB); | |||
| .def(py::init<int32_t, int32_t, int32_t, bool, uint8_t, uint8_t, uint8_t>()); | |||
| })); | |||
| PYBIND_REGISTER(PadOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<PadOp, TensorOp, std::shared_ptr<PadOp>>( | |||
| *m, "PadOp", | |||
| "Pads image with specified color, default black, " | |||
| "Takes amount to pad for top, bottom, left, right of image, boarder type and color") | |||
| .def(py::init<int32_t, int32_t, int32_t, int32_t, BorderType, uint8_t, uint8_t, uint8_t>(), | |||
| py::arg("padTop"), py::arg("padBottom"), py::arg("padLeft"), py::arg("padRight"), | |||
| py::arg("borderTypes") = PadOp::kDefBorderType, py::arg("fillR") = PadOp::kDefFillR, | |||
| py::arg("fillG") = PadOp::kDefFillG, py::arg("fillB") = PadOp::kDefFillB); | |||
| (void)py::class_<PadOp, TensorOp, std::shared_ptr<PadOp>>(*m, "PadOp") | |||
| .def(py::init<int32_t, int32_t, int32_t, int32_t, BorderType, uint8_t, uint8_t, uint8_t>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomCropDecodeResizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomCropDecodeResizeOp, TensorOp, std::shared_ptr<RandomCropDecodeResizeOp>>( | |||
| *m, "RandomCropDecodeResizeOp", "equivalent to RandomCropAndResize but crops before decoding") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>(), | |||
| py::arg("targetHeight"), py::arg("targetWidth"), | |||
| py::arg("scaleLb") = RandomCropDecodeResizeOp::kDefScaleLb, | |||
| py::arg("scaleUb") = RandomCropDecodeResizeOp::kDefScaleUb, | |||
| py::arg("aspectLb") = RandomCropDecodeResizeOp::kDefAspectLb, | |||
| py::arg("aspectUb") = RandomCropDecodeResizeOp::kDefAspectUb, | |||
| py::arg("interpolation") = RandomCropDecodeResizeOp::kDefInterpolation, | |||
| py::arg("maxIter") = RandomCropDecodeResizeOp::kDefMaxIter); | |||
| *m, "RandomCropDecodeResizeOp") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| RandomResizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomResizeOp, TensorOp, std::shared_ptr<RandomResizeOp>>( | |||
| *m, "RandomResizeOp", | |||
| "Tensor operation to resize an image using a randomly selected interpolation. Takes height and width.") | |||
| .def(py::init<int32_t, int32_t>(), py::arg("targetHeight"), | |||
| py::arg("targetWidth") = RandomResizeOp::kDefTargetWidth); | |||
| })); | |||
| PYBIND_REGISTER(RandomResizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomResizeOp, TensorOp, std::shared_ptr<RandomResizeOp>>(*m, "RandomResizeOp") | |||
| .def(py::init<int32_t, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomColorOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomColorOp, TensorOp, std::shared_ptr<RandomColorOp>>( | |||
| *m, "RandomColorOp", | |||
| "Tensor operation to blend an image with its grayscale version with random weights" | |||
| "Takes min and max for the range of random weights") | |||
| .def(py::init<float, float>(), py::arg("min"), py::arg("max")); | |||
| (void)py::class_<RandomColorOp, TensorOp, std::shared_ptr<RandomColorOp>>(*m, "RandomColorOp") | |||
| .def(py::init<float, float>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomColorAdjustOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomColorAdjustOp, TensorOp, std::shared_ptr<RandomColorAdjustOp>>( | |||
| *m, "RandomColorAdjustOp", | |||
| "Tensor operation to adjust an image's color randomly." | |||
| "Takes range for brightness, contrast, saturation, hue and") | |||
| .def(py::init<float, float, float, float, float, float, float, float>(), | |||
| py::arg("bright_factor_start"), py::arg("bright_factor_end"), py::arg("contrast_factor_start"), | |||
| py::arg("contrast_factor_end"), py::arg("saturation_factor_start"), | |||
| py::arg("saturation_factor_end"), py::arg("hue_factor_start"), py::arg("hue_factor_end")); | |||
| *m, "RandomColorAdjustOp") | |||
| .def(py::init<float, float, float, float, float, float, float, float>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomCropAndResizeWithBBoxOp, 1, ([](const py::module *m) { | |||
| (void) | |||
| py::class_<RandomCropAndResizeWithBBoxOp, TensorOp, std::shared_ptr<RandomCropAndResizeWithBBoxOp>>( | |||
| *m, "RandomCropAndResizeWithBBoxOp", | |||
| "Tensor operation to randomly crop an image (with BBoxes) and resize to a given size." | |||
| "Takes output height and width and" | |||
| "optional parameters for lower and upper bound for aspect ratio (h/w) and scale," | |||
| "interpolation mode, and max attempts to crop") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>(), | |||
| py::arg("targetHeight"), py::arg("targetWidth"), | |||
| py::arg("scaleLb") = RandomCropAndResizeWithBBoxOp::kDefScaleLb, | |||
| py::arg("scaleUb") = RandomCropAndResizeWithBBoxOp::kDefScaleUb, | |||
| py::arg("aspectLb") = RandomCropAndResizeWithBBoxOp::kDefAspectLb, | |||
| py::arg("aspectUb") = RandomCropAndResizeWithBBoxOp::kDefAspectUb, | |||
| py::arg("interpolation") = RandomCropAndResizeWithBBoxOp::kDefInterpolation, | |||
| py::arg("maxIter") = RandomCropAndResizeWithBBoxOp::kDefMaxIter); | |||
| *m, "RandomCropAndResizeWithBBoxOp") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomCropAndResizeOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomCropAndResizeOp, TensorOp, std::shared_ptr<RandomCropAndResizeOp>>( | |||
| *m, "RandomCropAndResizeOp", | |||
| "Tensor operation to randomly crop an image and resize to a given size." | |||
| "Takes output height and width and" | |||
| "optional parameters for lower and upper bound for aspect ratio (h/w) and scale," | |||
| "interpolation mode, and max attempts to crop") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>(), | |||
| py::arg("targetHeight"), py::arg("targetWidth"), | |||
| py::arg("scaleLb") = RandomCropAndResizeOp::kDefScaleLb, | |||
| py::arg("scaleUb") = RandomCropAndResizeOp::kDefScaleUb, | |||
| py::arg("aspectLb") = RandomCropAndResizeOp::kDefAspectLb, | |||
| py::arg("aspectUb") = RandomCropAndResizeOp::kDefAspectUb, | |||
| py::arg("interpolation") = RandomCropAndResizeOp::kDefInterpolation, | |||
| py::arg("maxIter") = RandomCropAndResizeOp::kDefMaxIter); | |||
| *m, "RandomCropAndResizeOp") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomRotationOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomRotationOp, TensorOp, std::shared_ptr<RandomRotationOp>>( | |||
| *m, "RandomRotationOp", | |||
| "Tensor operation to apply RandomRotation." | |||
| "Takes a range for degrees and " | |||
| "optional parameters for rotation center and image expand") | |||
| .def( | |||
| py::init<float, float, float, float, InterpolationMode, bool, uint8_t, uint8_t, uint8_t>(), | |||
| py::arg("startDegree"), py::arg("endDegree"), py::arg("centerX") = RandomRotationOp::kDefCenterX, | |||
| py::arg("centerY") = RandomRotationOp::kDefCenterY, | |||
| py::arg("interpolation") = RandomRotationOp::kDefInterpolation, | |||
| py::arg("expand") = RandomRotationOp::kDefExpand, py::arg("fillR") = RandomRotationOp::kDefFillR, | |||
| py::arg("fillG") = RandomRotationOp::kDefFillG, py::arg("fillB") = RandomRotationOp::kDefFillB); | |||
| (void)py::class_<RandomRotationOp, TensorOp, std::shared_ptr<RandomRotationOp>>(*m, | |||
| "RandomRotationOp") | |||
| .def(py::init<float, float, float, float, InterpolationMode, bool, uint8_t, uint8_t, uint8_t>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomSharpnessOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RandomSharpnessOp, TensorOp, std::shared_ptr<RandomSharpnessOp>>( | |||
| *m, "RandomSharpnessOp", | |||
| "Tensor operation to apply RandomSharpness." | |||
| "Takes a range for degrees") | |||
| .def(py::init<float, float>(), py::arg("startDegree") = RandomSharpnessOp::kDefStartDegree, | |||
| py::arg("endDegree") = RandomSharpnessOp::kDefEndDegree); | |||
| (void)py::class_<RandomSharpnessOp, TensorOp, std::shared_ptr<RandomSharpnessOp>>(*m, | |||
| "RandomSharpnessOp") | |||
| .def(py::init<float, float>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomSelectSubpolicyOp, 1, ([](const py::module *m) { | |||
| @@ -400,23 +292,19 @@ PYBIND_REGISTER(RandomSelectSubpolicyOp, 1, ([](const py::module *m) { | |||
| return std::make_shared<RandomSelectSubpolicyOp>(cpp_policy); | |||
| })); | |||
| })); | |||
| PYBIND_REGISTER(SoftDvppDecodeResizeJpegOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<SoftDvppDecodeResizeJpegOp, TensorOp, std::shared_ptr<SoftDvppDecodeResizeJpegOp>>( | |||
| *m, "SoftDvppDecodeResizeJpegOp", "TensorOp to use soft dvpp decode and resize jpeg image.") | |||
| .def(py::init<int32_t, int32_t>(), py::arg("targetHeight"), py::arg("targetWidth")); | |||
| *m, "SoftDvppDecodeResizeJpegOp") | |||
| .def(py::init<int32_t, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| SoftDvppDecodeRandomCropResizeJpegOp, 1, ([](const py::module *m) { | |||
| (void) | |||
| py::class_<SoftDvppDecodeRandomCropResizeJpegOp, TensorOp, std::shared_ptr<SoftDvppDecodeRandomCropResizeJpegOp>>( | |||
| *m, "SoftDvppDecodeRandomCropResizeJpegOp", | |||
| "TensorOp to use soft dvpp decode, random crop and resize jepg image.") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, int32_t>(), py::arg("targetHeight"), | |||
| py::arg("targetWidth"), py::arg("scaleLb") = RandomCropDecodeResizeOp::kDefScaleLb, | |||
| py::arg("scaleUb") = RandomCropDecodeResizeOp::kDefScaleUb, | |||
| py::arg("aspectLb") = RandomCropDecodeResizeOp::kDefAspectLb, | |||
| py::arg("aspectUb") = RandomCropDecodeResizeOp::kDefAspectUb, | |||
| py::arg("maxIter") = RandomCropDecodeResizeOp::kDefMaxIter); | |||
| *m, "SoftDvppDecodeRandomCropResizeJpegOp") | |||
| .def(py::init<int32_t, int32_t, float, float, float, float, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(RandomSolarizeOp, 1, ([](const py::module *m) { | |||
| @@ -46,73 +46,50 @@ namespace dataset { | |||
| #ifdef ENABLE_ICU4C | |||
| PYBIND_REGISTER(BasicTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<BasicTokenizerOp, TensorOp, std::shared_ptr<BasicTokenizerOp>>( | |||
| *m, "BasicTokenizerOp", "Tokenize a scalar tensor of UTF-8 string by specific rules.") | |||
| .def(py::init<const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>(), | |||
| py::arg("lower_case") = BasicTokenizerOp::kDefLowerCase, | |||
| py::arg("keep_whitespace") = BasicTokenizerOp::kDefKeepWhitespace, | |||
| py::arg("normalization_form") = BasicTokenizerOp::kDefNormalizationForm, | |||
| py::arg("preserve_unused_token") = BasicTokenizerOp::kDefPreserveUnusedToken, | |||
| py::arg("with_offsets") = BasicTokenizerOp::kDefWithOffsets); | |||
| (void)py::class_<BasicTokenizerOp, TensorOp, std::shared_ptr<BasicTokenizerOp>>(*m, | |||
| "BasicTokenizerOp") | |||
| .def(py::init<const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>()); | |||
| })); | |||
| PYBIND_REGISTER(WhitespaceTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<WhitespaceTokenizerOp, TensorOp, std::shared_ptr<WhitespaceTokenizerOp>>( | |||
| *m, "WhitespaceTokenizerOp", "Tokenize a scalar tensor of UTF-8 string on ICU defined whitespaces.") | |||
| .def(py::init<const bool &>(), py::arg(" with_offsets ") = WhitespaceTokenizerOp::kDefWithOffsets); | |||
| *m, "WhitespaceTokenizerOp") | |||
| .def(py::init<const bool &>()); | |||
| })); | |||
| PYBIND_REGISTER(UnicodeScriptTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<UnicodeScriptTokenizerOp, TensorOp, std::shared_ptr<UnicodeScriptTokenizerOp>>( | |||
| *m, "UnicodeScriptTokenizerOp", | |||
| "Tokenize a scalar tensor of UTF-8 string on Unicode script boundaries.") | |||
| *m, "UnicodeScriptTokenizerOp") | |||
| .def(py::init<>()) | |||
| .def(py::init<const bool &, const bool &>(), | |||
| py::arg("keep_whitespace") = UnicodeScriptTokenizerOp::kDefKeepWhitespace, | |||
| py::arg("with_offsets") = UnicodeScriptTokenizerOp::kDefWithOffsets); | |||
| .def(py::init<const bool &, const bool &>()); | |||
| })); | |||
| PYBIND_REGISTER(CaseFoldOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<CaseFoldOp, TensorOp, std::shared_ptr<CaseFoldOp>>( | |||
| *m, "CaseFoldOp", "Apply case fold operation on utf-8 string tensor") | |||
| .def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| CaseFoldOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<CaseFoldOp, TensorOp, std::shared_ptr<CaseFoldOp>>(*m, "CaseFoldOp").def(py::init<>()); | |||
| })); | |||
| PYBIND_REGISTER(NormalizeUTF8Op, 1, ([](const py::module *m) { | |||
| (void)py::class_<NormalizeUTF8Op, TensorOp, std::shared_ptr<NormalizeUTF8Op>>( | |||
| *m, "NormalizeUTF8Op", "Apply normalize operation on utf-8 string tensor.") | |||
| (void)py::class_<NormalizeUTF8Op, TensorOp, std::shared_ptr<NormalizeUTF8Op>>(*m, "NormalizeUTF8Op") | |||
| .def(py::init<>()) | |||
| .def(py::init<NormalizeForm>(), py::arg("normalize_form") = NormalizeUTF8Op::kDefNormalizeForm); | |||
| .def(py::init<NormalizeForm>()); | |||
| })); | |||
| PYBIND_REGISTER(RegexReplaceOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RegexReplaceOp, TensorOp, std::shared_ptr<RegexReplaceOp>>( | |||
| *m, "RegexReplaceOp", | |||
| "Replace utf-8 string tensor with 'replace' according to regular expression 'pattern'.") | |||
| .def(py::init<const std::string &, const std::string &, bool>(), py::arg("pattern"), | |||
| py::arg("replace"), py::arg("replace_all")); | |||
| (void)py::class_<RegexReplaceOp, TensorOp, std::shared_ptr<RegexReplaceOp>>(*m, "RegexReplaceOp") | |||
| .def(py::init<const std::string &, const std::string &, bool>()); | |||
| })); | |||
| PYBIND_REGISTER(RegexTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<RegexTokenizerOp, TensorOp, std::shared_ptr<RegexTokenizerOp>>( | |||
| *m, "RegexTokenizerOp", "Tokenize a scalar tensor of UTF-8 string by regex expression pattern.") | |||
| .def(py::init<const std::string &, const std::string &, const bool &>(), py::arg("delim_pattern"), | |||
| py::arg("keep_delim_pattern"), py::arg("with_offsets") = RegexTokenizerOp::kDefWithOffsets); | |||
| (void)py::class_<RegexTokenizerOp, TensorOp, std::shared_ptr<RegexTokenizerOp>>(*m, | |||
| "RegexTokenizerOp") | |||
| .def(py::init<const std::string &, const std::string &, const bool &>()); | |||
| })); | |||
| PYBIND_REGISTER(BertTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<BertTokenizerOp, TensorOp, std::shared_ptr<BertTokenizerOp>>( | |||
| *m, "BertTokenizerOp", "Tokenizer used for Bert text process.") | |||
| (void)py::class_<BertTokenizerOp, TensorOp, std::shared_ptr<BertTokenizerOp>>(*m, "BertTokenizerOp") | |||
| .def(py::init<const std::shared_ptr<Vocab> &, const std::string &, const int &, const std::string &, | |||
| const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>(), | |||
| py::arg("vocab"), | |||
| py::arg("suffix_indicator") = std::string(WordpieceTokenizerOp::kDefSuffixIndicator), | |||
| py::arg("max_bytes_per_token") = WordpieceTokenizerOp::kDefMaxBytesPerToken, | |||
| py::arg("unknown_token") = std::string(WordpieceTokenizerOp::kDefUnknownToken), | |||
| py::arg("lower_case") = BasicTokenizerOp::kDefLowerCase, | |||
| py::arg("keep_whitespace") = BasicTokenizerOp::kDefKeepWhitespace, | |||
| py::arg("normalization_form") = BasicTokenizerOp::kDefNormalizationForm, | |||
| py::arg("preserve_unused_token") = BasicTokenizerOp::kDefPreserveUnusedToken, | |||
| py::arg("with_offsets") = WordpieceTokenizerOp::kDefWithOffsets); | |||
| const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>()); | |||
| })); | |||
| PYBIND_REGISTER(NormalizeForm, 0, ([](const py::module *m) { | |||
| @@ -128,11 +105,9 @@ PYBIND_REGISTER(NormalizeForm, 0, ([](const py::module *m) { | |||
| #endif | |||
| PYBIND_REGISTER(JiebaTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<JiebaTokenizerOp, TensorOp, std::shared_ptr<JiebaTokenizerOp>>( | |||
| *m, "JiebaTokenizerOp", "") | |||
| .def(py::init<const std::string &, const std::string &, const JiebaMode &, const bool &>(), | |||
| py::arg("hmm_path"), py::arg("mp_path"), py::arg("mode") = JiebaMode::kMix, | |||
| py::arg("with_offsets") = JiebaTokenizerOp::kDefWithOffsets) | |||
| (void)py::class_<JiebaTokenizerOp, TensorOp, std::shared_ptr<JiebaTokenizerOp>>(*m, | |||
| "JiebaTokenizerOp") | |||
| .def(py::init<const std::string &, const std::string &, const JiebaMode &, const bool &>()) | |||
| .def("add_word", [](JiebaTokenizerOp &self, const std::string word, int freq) { | |||
| THROW_IF_ERROR(self.AddWord(word, freq)); | |||
| }); | |||
| @@ -140,13 +115,12 @@ PYBIND_REGISTER(JiebaTokenizerOp, 1, ([](const py::module *m) { | |||
| PYBIND_REGISTER(UnicodeCharTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<UnicodeCharTokenizerOp, TensorOp, std::shared_ptr<UnicodeCharTokenizerOp>>( | |||
| *m, "UnicodeCharTokenizerOp", "Tokenize a scalar tensor of UTF-8 string to Unicode characters.") | |||
| .def(py::init<const bool &>(), py::arg("with_offsets") = UnicodeCharTokenizerOp::kDefWithOffsets); | |||
| *m, "UnicodeCharTokenizerOp") | |||
| .def(py::init<const bool &>()); | |||
| })); | |||
| PYBIND_REGISTER(LookupOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<LookupOp, TensorOp, std::shared_ptr<LookupOp>>( | |||
| *m, "LookupOp", "Tensor operation to LookUp each word.") | |||
| (void)py::class_<LookupOp, TensorOp, std::shared_ptr<LookupOp>>(*m, "LookupOp") | |||
| .def(py::init([](std::shared_ptr<Vocab> vocab, const py::object &py_word) { | |||
| if (vocab == nullptr) { | |||
| THROW_IF_ERROR(Status(StatusCode::kUnexpectedError, "vocab object type is incorrect or null.")); | |||
| @@ -165,56 +139,42 @@ PYBIND_REGISTER(LookupOp, 1, ([](const py::module *m) { | |||
| })); | |||
| PYBIND_REGISTER(NgramOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<NgramOp, TensorOp, std::shared_ptr<NgramOp>>(*m, "NgramOp", | |||
| "TensorOp performs ngram mapping.") | |||
| (void)py::class_<NgramOp, TensorOp, std::shared_ptr<NgramOp>>(*m, "NgramOp") | |||
| .def(py::init<const std::vector<int32_t> &, int32_t, int32_t, const std::string &, | |||
| const std::string &, const std::string &>(), | |||
| py::arg("ngrams"), py::arg("l_pad_len"), py::arg("r_pad_len"), py::arg("l_pad_token"), | |||
| py::arg("r_pad_token"), py::arg("separator")); | |||
| const std::string &, const std::string &>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| WordpieceTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<WordpieceTokenizerOp, TensorOp, std::shared_ptr<WordpieceTokenizerOp>>( | |||
| *m, "WordpieceTokenizerOp", "Tokenize scalar token or 1-D tokens to subword tokens.") | |||
| .def( | |||
| py::init<const std::shared_ptr<Vocab> &, const std::string &, const int &, const std::string &, const bool &>(), | |||
| py::arg("vocab"), py::arg("suffix_indicator") = std::string(WordpieceTokenizerOp::kDefSuffixIndicator), | |||
| py::arg("max_bytes_per_token") = WordpieceTokenizerOp::kDefMaxBytesPerToken, | |||
| py::arg("unknown_token") = std::string(WordpieceTokenizerOp::kDefUnknownToken), | |||
| py::arg("with_offsets") = WordpieceTokenizerOp::kDefWithOffsets); | |||
| })); | |||
| PYBIND_REGISTER(WordpieceTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<WordpieceTokenizerOp, TensorOp, std::shared_ptr<WordpieceTokenizerOp>>( | |||
| *m, "WordpieceTokenizerOp") | |||
| .def(py::init<const std::shared_ptr<Vocab> &, const std::string &, const int &, const std::string &, | |||
| const bool &>()); | |||
| })); | |||
| PYBIND_REGISTER(SlidingWindowOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<SlidingWindowOp, TensorOp, std::shared_ptr<SlidingWindowOp>>( | |||
| *m, "SlidingWindowOp", "TensorOp to apply sliding window to a 1-D Tensor.") | |||
| .def(py::init<uint32_t, int32_t>(), py::arg("width"), py::arg("axis")); | |||
| (void)py::class_<SlidingWindowOp, TensorOp, std::shared_ptr<SlidingWindowOp>>(*m, "SlidingWindowOp") | |||
| .def(py::init<uint32_t, int32_t>()); | |||
| })); | |||
| PYBIND_REGISTER( | |||
| SentencePieceTokenizerOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<SentencePieceTokenizerOp, TensorOp, std::shared_ptr<SentencePieceTokenizerOp>>( | |||
| *m, "SentencePieceTokenizerOp", "Tokenize scalar token or 1-D tokens to tokens by sentence piece.") | |||
| *m, "SentencePieceTokenizerOp") | |||
| .def( | |||
| py::init<std::shared_ptr<SentencePieceVocab> &, const SPieceTokenizerLoadType, const SPieceTokenizerOutType>(), | |||
| py::arg("vocab"), py::arg("load_type") = SPieceTokenizerLoadType::kModel, | |||
| py::arg("out_type") = SPieceTokenizerOutType::kString) | |||
| py::init<std::shared_ptr<SentencePieceVocab> &, const SPieceTokenizerLoadType, const SPieceTokenizerOutType>()) | |||
| .def(py::init<const std::string &, const std::string &, const SPieceTokenizerLoadType, | |||
| const SPieceTokenizerOutType>(), | |||
| py::arg("model_path"), py::arg("model_filename"), py::arg("load_type") = SPieceTokenizerLoadType::kFile, | |||
| py::arg("out_type") = SPieceTokenizerOutType::kString); | |||
| const SPieceTokenizerOutType>()); | |||
| })); | |||
| PYBIND_REGISTER(ToNumberOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<ToNumberOp, TensorOp, std::shared_ptr<ToNumberOp>>( | |||
| *m, "ToNumberOp", "TensorOp to convert strings to numbers.") | |||
| .def(py::init<DataType>(), py::arg("data_type")) | |||
| .def(py::init<std::string>(), py::arg("data_type")); | |||
| (void)py::class_<ToNumberOp, TensorOp, std::shared_ptr<ToNumberOp>>(*m, "ToNumberOp") | |||
| .def(py::init<DataType>()) | |||
| .def(py::init<std::string>()); | |||
| })); | |||
| PYBIND_REGISTER(TruncateSequencePairOp, 1, ([](const py::module *m) { | |||
| (void)py::class_<TruncateSequencePairOp, TensorOp, std::shared_ptr<TruncateSequencePairOp>>( | |||
| *m, "TruncateSequencePairOp", "Tensor operation to truncate two tensors to a max_length") | |||
| *m, "TruncateSequencePairOp") | |||
| .def(py::init<int64_t>()); | |||
| })); | |||
| @@ -62,7 +62,7 @@ PYBIND_REGISTER( | |||
| ShardSample, 0, ([](const py::module *m) { | |||
| (void)py::class_<mindrecord::ShardSample, mindrecord::ShardOperator, std::shared_ptr<mindrecord::ShardSample>>( | |||
| *m, "MindrecordSubsetRandomSampler") | |||
| .def(py::init<std::vector<int64_t>, uint32_t>(), py::arg("indices"), py::arg("seed") = GetSeed()); | |||
| .def(py::init<std::vector<int64_t>, uint32_t>()); | |||
| })); | |||
| PYBIND_REGISTER(ShardSequentialSample, 0, ([](const py::module *m) { | |||
| @@ -37,7 +37,6 @@ add_library(kernels-image OBJECT | |||
| random_vertical_flip_with_bbox_op.cc | |||
| random_sharpness_op.cc | |||
| rescale_op.cc | |||
| resize_bilinear_op.cc | |||
| resize_op.cc | |||
| rgba_to_bgr_op.cc | |||
| rgba_to_rgb_op.cc | |||
| @@ -1,26 +0,0 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "minddata/dataset/kernels/image/resize_bilinear_op.h" | |||
| #include <random> | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| const int32_t ResizeBilinearOp::kDefWidth = 0; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -21,6 +21,7 @@ User can also define custom sampler by extending from Sampler class. | |||
| import numpy as np | |||
| import mindspore._c_dataengine as cde | |||
| import mindspore.dataset as ds | |||
| class Sampler: | |||
| """ | |||
| @@ -541,7 +542,7 @@ class SubsetRandomSampler(BuiltinSampler): | |||
| return self.child_sampler.is_sharded() | |||
| def create_for_minddataset(self): | |||
| c_sampler = cde.MindrecordSubsetRandomSampler(self.indices) | |||
| c_sampler = cde.MindrecordSubsetRandomSampler(self.indices, ds.config.get_seed()) | |||
| c_child_sampler = self.create_child_for_minddataset() | |||
| c_sampler.add_child(c_child_sampler) | |||
| return c_sampler | |||
| @@ -52,8 +52,8 @@ import mindspore._c_dataengine as cde | |||
| from .utils import JiebaMode, NormalizeForm, to_str, SPieceTokenizerOutType, SPieceTokenizerLoadType | |||
| from .validators import check_lookup, check_jieba_add_dict, \ | |||
| check_jieba_add_word, check_jieba_init, check_with_offsets, check_unicode_script_tokenizer,\ | |||
| check_wordpiece_tokenizer, check_regex_tokenizer, check_basic_tokenizer, check_ngram, check_pair_truncate,\ | |||
| check_jieba_add_word, check_jieba_init, check_with_offsets, check_unicode_script_tokenizer, \ | |||
| check_wordpiece_tokenizer, check_regex_tokenizer, check_basic_tokenizer, check_ngram, check_pair_truncate, \ | |||
| check_to_number, check_bert_tokenizer, check_python_tokenizer, check_slidingwindow | |||
| from ..core.datatypes import mstype_to_detype | |||
| @@ -100,7 +100,8 @@ class SlidingWindow(cde.SlidingWindowOp): | |||
| @check_slidingwindow | |||
| def __init__(self, width, axis=0): | |||
| super().__init__(width=width, axis=axis) | |||
| super().__init__(width, axis) | |||
| class Ngram(cde.NgramOp): | |||
| @@ -126,8 +127,7 @@ class Ngram(cde.NgramOp): | |||
| @check_ngram | |||
| def __init__(self, n, left_pad=("", 0), right_pad=("", 0), separator=" "): | |||
| super().__init__(ngrams=n, l_pad_len=left_pad[1], r_pad_len=right_pad[1], l_pad_token=left_pad[0], | |||
| r_pad_token=right_pad[0], separator=separator) | |||
| super().__init__(n, left_pad[1], right_pad[1], left_pad[0], right_pad[0], separator) | |||
| DE_C_INTER_JIEBA_MODE = { | |||
| @@ -326,6 +326,7 @@ class WordpieceTokenizer(cde.WordpieceTokenizerOp): | |||
| super().__init__(self.vocab, self.suffix_indicator, self.max_bytes_per_token, | |||
| self.unknown_token, self.with_offsets) | |||
| DE_C_INTER_SENTENCEPIECE_LOADTYPE = { | |||
| SPieceTokenizerLoadType.FILE: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KFILE, | |||
| SPieceTokenizerLoadType.MODEL: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KMODEL | |||
| @@ -336,6 +337,7 @@ DE_C_INTER_SENTENCEPIECE_OUTTYPE = { | |||
| SPieceTokenizerOutType.INT: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KINT | |||
| } | |||
| class SentencePieceTokenizer(cde.SentencePieceTokenizerOp): | |||
| """ | |||
| Tokenize scalar token or 1-D tokens to tokens by sentencepiece. | |||
| @@ -357,6 +359,7 @@ class SentencePieceTokenizer(cde.SentencePieceTokenizerOp): | |||
| super().__init__(mode, DE_C_INTER_SENTENCEPIECE_LOADTYPE[SPieceTokenizerLoadType.MODEL], | |||
| DE_C_INTER_SENTENCEPIECE_OUTTYPE[out_type]) | |||
| if platform.system().lower() != 'windows': | |||
| class WhitespaceTokenizer(cde.WhitespaceTokenizerOp): | |||
| """ | |||
| @@ -362,7 +362,7 @@ class RandomCrop(cde.RandomCropOp): | |||
| padding = (0, 0, 0, 0) | |||
| else: | |||
| padding = parse_padding(padding) | |||
| if isinstance(fill_value, int): # temporary fix | |||
| if isinstance(fill_value, int): | |||
| fill_value = tuple([fill_value] * 3) | |||
| border_type = DE_C_BORDER_TYPE[padding_mode] | |||
| @@ -417,7 +417,7 @@ class RandomCropWithBBox(cde.RandomCropWithBBoxOp): | |||
| else: | |||
| padding = parse_padding(padding) | |||
| if isinstance(fill_value, int): # temporary fix | |||
| if isinstance(fill_value, int): | |||
| fill_value = tuple([fill_value] * 3) | |||
| border_type = DE_C_BORDER_TYPE[padding_mode] | |||
| @@ -549,9 +549,8 @@ class Resize(cde.ResizeOp): | |||
| self.interpolation = interpolation | |||
| interpoltn = DE_C_INTER_MODE[interpolation] | |||
| if isinstance(size, int): | |||
| super().__init__(size, interpolation=interpoltn) | |||
| else: | |||
| super().__init__(*size, interpoltn) | |||
| size = (size, 0) | |||
| super().__init__(*size, interpoltn) | |||
| class ResizeWithBBox(cde.ResizeWithBBoxOp): | |||
| @@ -579,9 +578,8 @@ class ResizeWithBBox(cde.ResizeWithBBoxOp): | |||
| self.interpolation = interpolation | |||
| interpoltn = DE_C_INTER_MODE[interpolation] | |||
| if isinstance(size, int): | |||
| super().__init__(size, interpolation=interpoltn) | |||
| else: | |||
| super().__init__(*size, interpoltn) | |||
| size = (size, 0) | |||
| super().__init__(*size, interpoltn) | |||
| class RandomResizedCropWithBBox(cde.RandomCropAndResizeWithBBoxOp): | |||
| @@ -779,7 +777,7 @@ class RandomRotation(cde.RandomRotationOp): | |||
| degrees = (-degrees, degrees) | |||
| if center is None: | |||
| center = (-1, -1) | |||
| if isinstance(fill_value, int): # temporary fix | |||
| if isinstance(fill_value, int): | |||
| fill_value = tuple([fill_value] * 3) | |||
| interpolation = DE_C_INTER_MODE[resample] | |||
| super().__init__(*degrees, *center, interpolation, expand, *fill_value) | |||
| @@ -816,9 +814,8 @@ class RandomResize(cde.RandomResizeOp): | |||
| def __init__(self, size): | |||
| self.size = size | |||
| if isinstance(size, int): | |||
| super().__init__(size) | |||
| else: | |||
| super().__init__(*size) | |||
| size = (size, 0) | |||
| super().__init__(*size) | |||
| class RandomResizeWithBBox(cde.RandomResizeWithBBoxOp): | |||
| @@ -837,9 +834,8 @@ class RandomResizeWithBBox(cde.RandomResizeWithBBoxOp): | |||
| def __init__(self, size): | |||
| self.size = size | |||
| if isinstance(size, int): | |||
| super().__init__(size) | |||
| else: | |||
| super().__init__(*size) | |||
| size = (size, 0) | |||
| super().__init__(*size) | |||
| class HWC2CHW(cde.ChannelSwapOp): | |||
| @@ -918,7 +914,7 @@ class Pad(cde.PadOp): | |||
| @check_pad | |||
| def __init__(self, padding, fill_value=0, padding_mode=Border.CONSTANT): | |||
| padding = parse_padding(padding) | |||
| if isinstance(fill_value, int): # temporary fix | |||
| if isinstance(fill_value, int): | |||
| fill_value = tuple([fill_value] * 3) | |||
| padding_mode = DE_C_BORDER_TYPE[padding_mode] | |||
| @@ -59,7 +59,6 @@ SET(DE_UT_SRCS | |||
| rename_op_test.cc | |||
| repeat_op_test.cc | |||
| rescale_op_test.cc | |||
| resize_bilinear_op_test.cc | |||
| resize_op_test.cc | |||
| resize_with_bbox_op_test.cc | |||
| rgba_to_bgr_op_test.cc | |||
| @@ -1200,4 +1200,8 @@ TEST_F(MindDataTestPipeline, TestRandomSolarizeFail) { | |||
| threshold = {1}; | |||
| random_solarize = mindspore::dataset::api::vision::RandomSolarize(threshold); | |||
| EXPECT_EQ(random_solarize, nullptr); | |||
| threshold = {}; | |||
| random_solarize = mindspore::dataset::api::vision::RandomSolarize(threshold); | |||
| EXPECT_EQ(random_solarize, nullptr); | |||
| } | |||
| @@ -1,44 +0,0 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/common.h" | |||
| #include "common/cvop_common.h" | |||
| #include "minddata/dataset/kernels/image/resize_bilinear_op.h" | |||
| #include "utils/log_adapter.h" | |||
| using namespace mindspore::dataset; | |||
| using mindspore::MsLogLevel::INFO; | |||
| using mindspore::ExceptionType::NoExceptionType; | |||
| using mindspore::LogStream; | |||
| class MindDataTestResizeBilinearOp : public UT::CVOP::CVOpCommon { | |||
| public: | |||
| MindDataTestResizeBilinearOp() : CVOpCommon() {} | |||
| }; | |||
| TEST_F(MindDataTestResizeBilinearOp, TestOp) { | |||
| MS_LOG(INFO) << "Doing testResizeBilinear."; | |||
| // Resizing with a factor of 0.5 | |||
| TensorShape s = input_tensor_->shape(); | |||
| int output_w = 0.5 * s[0]; | |||
| int output_h = (s[0] * output_w) / s[1]; | |||
| std::shared_ptr<Tensor> output_tensor; | |||
| // Resizing | |||
| std::unique_ptr<ResizeBilinearOp> op(new ResizeBilinearOp(output_h, output_w)); | |||
| Status st = op->Compute(input_tensor_, &output_tensor); | |||
| EXPECT_TRUE(st.IsOk()); | |||
| CheckImageShapeAndData(output_tensor, kResizeBilinear); | |||
| MS_LOG(INFO) << "testResizeBilinear end."; | |||
| } | |||