|
|
|
@@ -22,7 +22,7 @@ from mindspore import Tensor |
|
|
|
from mindspore.nn.optim.momentum import Momentum |
|
|
|
from mindspore.train.model import Model |
|
|
|
from mindspore.context import ParallelMode |
|
|
|
from mindspore.train.callback import Callback, LossMonitor, ModelCheckpoint, CheckpointConfig |
|
|
|
from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig |
|
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager |
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size |
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net |
|
|
|
@@ -59,13 +59,33 @@ class MyTimeMonitor(Callback): |
|
|
|
def step_begin(self, run_context): |
|
|
|
self.step_time = time.time() |
|
|
|
def step_end(self, run_context): |
|
|
|
cb_params = run_context.original_args() |
|
|
|
loss = cb_params.net_outputs |
|
|
|
|
|
|
|
if isinstance(loss, (tuple, list)): |
|
|
|
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray): |
|
|
|
loss = loss[0] |
|
|
|
|
|
|
|
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray): |
|
|
|
loss = np.mean(loss.asnumpy()) |
|
|
|
|
|
|
|
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 |
|
|
|
|
|
|
|
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)): |
|
|
|
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format( |
|
|
|
cb_params.cur_epoch_num, cur_step_in_epoch)) |
|
|
|
step_mseconds = (time.time() - self.step_time) * 1000 |
|
|
|
fps = self.batch_size / step_mseconds *1000 * self.size |
|
|
|
print("Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True, end=" ") |
|
|
|
|
|
|
|
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16"): |
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True) |
|
|
|
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss), |
|
|
|
"Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True) |
|
|
|
|
|
|
|
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16", |
|
|
|
device_num=1): |
|
|
|
if device_num == 1: |
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True) |
|
|
|
else: |
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True, |
|
|
|
num_shards=device_num, shard_id=get_rank()) |
|
|
|
image_size = 224 |
|
|
|
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] |
|
|
|
std = [0.229 * 255, 0.224 * 255, 0.225 * 255] |
|
|
|
@@ -185,8 +205,7 @@ def train(): |
|
|
|
if mode == context.PYNATIVE_MODE: |
|
|
|
print_per_steps = 1 |
|
|
|
time_cb = MyTimeMonitor(total_batch, print_per_steps) |
|
|
|
loss_cb = LossMonitor() |
|
|
|
cb = [time_cb, loss_cb] |
|
|
|
cb = [time_cb] |
|
|
|
if save_ckpt: |
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=5 * step_size, keep_checkpoint_max=5) |
|
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet_benchmark", directory=ckpt_save_dir, config=config_ck) |
|
|
|
|