| @@ -22,7 +22,7 @@ from mindspore import Tensor | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.train.model import Model | |||
| from mindspore.context import ParallelMode | |||
| from mindspore.train.callback import Callback, LossMonitor, ModelCheckpoint, CheckpointConfig | |||
| from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| @@ -59,13 +59,33 @@ class MyTimeMonitor(Callback): | |||
| def step_begin(self, run_context): | |||
| self.step_time = time.time() | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| loss = cb_params.net_outputs | |||
| if isinstance(loss, (tuple, list)): | |||
| if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray): | |||
| loss = loss[0] | |||
| if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray): | |||
| loss = np.mean(loss.asnumpy()) | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 | |||
| if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)): | |||
| raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format( | |||
| cb_params.cur_epoch_num, cur_step_in_epoch)) | |||
| step_mseconds = (time.time() - self.step_time) * 1000 | |||
| fps = self.batch_size / step_mseconds *1000 * self.size | |||
| print("Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True, end=" ") | |||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16"): | |||
| ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True) | |||
| print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss), | |||
| "Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True) | |||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16", | |||
| device_num=1): | |||
| if device_num == 1: | |||
| ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True) | |||
| else: | |||
| ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True, | |||
| num_shards=device_num, shard_id=get_rank()) | |||
| image_size = 224 | |||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||
| @@ -185,8 +205,7 @@ def train(): | |||
| if mode == context.PYNATIVE_MODE: | |||
| print_per_steps = 1 | |||
| time_cb = MyTimeMonitor(total_batch, print_per_steps) | |||
| loss_cb = LossMonitor() | |||
| cb = [time_cb, loss_cb] | |||
| cb = [time_cb] | |||
| if save_ckpt: | |||
| config_ck = CheckpointConfig(save_checkpoint_steps=5 * step_size, keep_checkpoint_max=5) | |||
| ckpt_cb = ModelCheckpoint(prefix="resnet_benchmark", directory=ckpt_save_dir, config=config_ck) | |||