| @@ -0,0 +1,101 @@ | |||
| # MobileNetV2 Example | |||
| ## Description | |||
| This is an example of training MobileNetV2 with ImageNet2012 dataset in MindSpore. | |||
| ## Requirements | |||
| * Install [MindSpore](https://www.mindspore.cn/install/en). | |||
| * Download the dataset [ImageNet2012](http://www.image-net.org/). | |||
| > Unzip the ImageNet2012 dataset to any path you want and the folder structure should be as follows: | |||
| > ``` | |||
| > . | |||
| > ├── train # train dataset | |||
| > └── val # infer dataset | |||
| > ``` | |||
| ## Example structure | |||
| ``` shell | |||
| . | |||
| ├── config.py # parameter configuration | |||
| ├── dataset.py # data preprocessing | |||
| ├── eval.py # infer script | |||
| ├── launch.py # launcher for distributed training | |||
| ├── lr_generator.py # generate learning rate for each step | |||
| ├── run_infer.sh # launch infering | |||
| ├── run_train.sh # launch training | |||
| └── train.py # train script | |||
| ``` | |||
| ## Parameter configuration | |||
| Parameters for both training and inference can be set in 'config.py'. | |||
| ``` | |||
| "num_classes": 1000, # dataset class num | |||
| "image_height": 224, # image height | |||
| "image_width": 224, # image width | |||
| "batch_size": 256, # training or infering batch size | |||
| "epoch_size": 200, # total training epochs, including warmup_epochs | |||
| "warmup_epochs": 4, # warmup epochs | |||
| "lr": 0.4, # base learning rate | |||
| "momentum": 0.9, # momentum | |||
| "weight_decay": 4e-5, # weight decay | |||
| "loss_scale": 1024, # loss scale | |||
| "save_checkpoint": True, # whether save checkpoint | |||
| "save_checkpoint_epochs": 1, # the epoch interval between two checkpoints | |||
| "keep_checkpoint_max": 200, # only keep the last keep_checkpoint_max checkpoint | |||
| "save_checkpoint_path": "./checkpoint" # path to save checkpoint | |||
| ``` | |||
| ## Running the example | |||
| ### Train | |||
| #### Usage | |||
| Usage: sh run_train.sh [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] | |||
| #### Launch | |||
| ``` | |||
| # training example | |||
| sh run_train.sh 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet | |||
| ``` | |||
| #### Result | |||
| Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings. | |||
| ``` | |||
| epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100] | |||
| epoch time: 140522.500, per step time: 224.836, avg loss: 5.258 | |||
| epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200] | |||
| epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 | |||
| ``` | |||
| ### Infer | |||
| #### Usage | |||
| Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH] | |||
| #### Launch | |||
| ``` | |||
| # infer example | |||
| sh run_infer.sh ~/imagenet ~/train/mobilenet-200_625.ckpt | |||
| ``` | |||
| > checkpoint can be produced in training process. | |||
| #### Result | |||
| Inference result will be stored in the example path, you can find result like the followings in `val.log`. | |||
| ``` | |||
| result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt | |||
| ``` | |||
| @@ -0,0 +1,35 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network config setting, will be used in train.py and eval.py | |||
| """ | |||
| from easydict import EasyDict as ed | |||
| config = ed({ | |||
| "num_classes": 1000, | |||
| "image_height": 224, | |||
| "image_width": 224, | |||
| "batch_size": 256, | |||
| "epoch_size": 200, | |||
| "warmup_epochs": 4, | |||
| "lr": 0.4, | |||
| "momentum": 0.9, | |||
| "weight_decay": 4e-5, | |||
| "loss_scale": 1024, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_epochs": 1, | |||
| "keep_checkpoint_max": 200, | |||
| "save_checkpoint_path": "./checkpoint", | |||
| }) | |||
| @@ -0,0 +1,84 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| create train or eval dataset. | |||
| """ | |||
| import os | |||
| import mindspore.common.dtype as mstype | |||
| import mindspore.dataset.engine as de | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| import mindspore.dataset.transforms.c_transforms as C2 | |||
| from config import config | |||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||
| """ | |||
| create a train or eval dataset | |||
| Args: | |||
| dataset_path(string): the path of dataset. | |||
| do_train(bool): whether dataset is used for train or eval. | |||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||
| batch_size(int): the batch size of dataset. Default: 32 | |||
| Returns: | |||
| dataset | |||
| """ | |||
| rank_size = int(os.getenv("RANK_SIZE")) | |||
| rank_id = int(os.getenv("RANK_ID")) | |||
| if rank_size == 1: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=16, shuffle=True) | |||
| else: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=16, shuffle=True, | |||
| num_shards=rank_size, shard_id=rank_id) | |||
| resize_height = config.image_height | |||
| resize_width = config.image_width | |||
| rescale = 1.0 / 255.0 | |||
| shift = 0.0 | |||
| buffer_size = 1000 | |||
| # define map operations | |||
| decode_op = C.Decode() | |||
| resize_crop_op = C.RandomResizedCrop(resize_height, scale=(0.2, 1.0)) | |||
| horizontal_flip_op = C.RandomHorizontalFlip() | |||
| resize_op = C.Resize((256, 256)) | |||
| center_crop = C.CenterCrop(resize_width) | |||
| rescale_op = C.Rescale(rescale, shift) | |||
| normalize_op = C.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
| change_swap_op = C.HWC2CHW() | |||
| if do_train: | |||
| trans = [decode_op, resize_crop_op, horizontal_flip_op, rescale_op, normalize_op, change_swap_op] | |||
| else: | |||
| trans = [decode_op, resize_op, center_crop, rescale_op, normalize_op, change_swap_op] | |||
| type_cast_op = C2.TypeCast(mstype.int32) | |||
| ds = ds.map(input_columns="image", operations=trans) | |||
| ds = ds.map(input_columns="label", operations=type_cast_op) | |||
| # apply shuffle operations | |||
| ds = ds.shuffle(buffer_size=buffer_size) | |||
| # apply batch operations | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| # apply dataset repeat operation | |||
| ds = ds.repeat(repeat_num) | |||
| return ds | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| eval. | |||
| """ | |||
| import os | |||
| import argparse | |||
| from dataset import create_dataset | |||
| from config import config | |||
| from mindspore import context | |||
| from mindspore.model_zoo.mobilenet import mobilenet_v2 | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| args_opt = parser.parse_args() | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) | |||
| context.set_context(enable_task_sink=True) | |||
| context.set_context(enable_loop_sink=True) | |||
| context.set_context(enable_mem_reuse=True) | |||
| if __name__ == '__main__': | |||
| context.set_context(enable_hccl=False) | |||
| loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') | |||
| net = mobilenet_v2() | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) | |||
| step_size = dataset.get_dataset_size() | |||
| if args_opt.checkpoint_path: | |||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||
| load_param_into_net(net, param_dict) | |||
| net.set_train(False) | |||
| model = Model(net, loss_fn=loss, metrics={'acc'}) | |||
| res = model.eval(dataset) | |||
| print("result:", res, "ckpt=", args_opt.checkpoint_path) | |||
| @@ -0,0 +1,150 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """launch train script""" | |||
| import os | |||
| import sys | |||
| import subprocess | |||
| import json | |||
| from argparse import ArgumentParser | |||
| def parse_args(): | |||
| """ | |||
| parse args . | |||
| Args: | |||
| Returns: | |||
| args. | |||
| Examples: | |||
| >>> parse_args() | |||
| """ | |||
| parser = ArgumentParser(description="mindspore distributed training launch " | |||
| "helper utilty that will spawn up " | |||
| "multiple distributed processes") | |||
| parser.add_argument("--nproc_per_node", type=int, default=1, | |||
| help="The number of processes to launch on each node, " | |||
| "for D training, this is recommended to be set " | |||
| "to the number of D in your system so that " | |||
| "each process can be bound to a single D.") | |||
| parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7", | |||
| help="will use the visible devices sequentially") | |||
| parser.add_argument("--server_id", type=str, default="", | |||
| help="server ip") | |||
| parser.add_argument("--training_script", type=str, | |||
| help="The full path to the single D training " | |||
| "program/script to be launched in parallel, " | |||
| "followed by all the arguments for the " | |||
| "training script") | |||
| # rest from the training program | |||
| args, unknown = parser.parse_known_args() | |||
| args.training_script_args = unknown | |||
| return args | |||
| def main(): | |||
| print("start", __file__) | |||
| args = parse_args() | |||
| print(args) | |||
| visible_devices = args.visible_devices.split(',') | |||
| assert os.path.isfile(args.training_script) | |||
| assert len(visible_devices) >= args.nproc_per_node | |||
| print('visible_devices:{}'.format(visible_devices)) | |||
| if not args.server_id: | |||
| print('pleaser input server ip!!!') | |||
| exit(0) | |||
| print('server_id:{}'.format(args.server_id)) | |||
| # construct hccn_table | |||
| hccn_configs = open('/etc/hccn.conf', 'r').readlines() | |||
| device_ips = {} | |||
| for hccn_item in hccn_configs: | |||
| hccn_item = hccn_item.strip() | |||
| if hccn_item.startswith('address_'): | |||
| device_id, device_ip = hccn_item.split('=') | |||
| device_id = device_id.split('_')[1] | |||
| device_ips[device_id] = device_ip | |||
| print('device_id:{}, device_ip:{}'.format(device_id, device_ip)) | |||
| hccn_table = {} | |||
| hccn_table['board_id'] = '0x0000' | |||
| hccn_table['chip_info'] = '910' | |||
| hccn_table['deploy_mode'] = 'lab' | |||
| hccn_table['group_count'] = '1' | |||
| hccn_table['group_list'] = [] | |||
| instance_list = [] | |||
| usable_dev = '' | |||
| for instance_id in range(args.nproc_per_node): | |||
| instance = {} | |||
| instance['devices'] = [] | |||
| device_id = visible_devices[instance_id] | |||
| device_ip = device_ips[device_id] | |||
| usable_dev += str(device_id) | |||
| instance['devices'].append({ | |||
| 'device_id': device_id, | |||
| 'device_ip': device_ip, | |||
| }) | |||
| instance['rank_id'] = str(instance_id) | |||
| instance['server_id'] = args.server_id | |||
| instance_list.append(instance) | |||
| hccn_table['group_list'].append({ | |||
| 'device_num': str(args.nproc_per_node), | |||
| 'server_num': '1', | |||
| 'group_name': '', | |||
| 'instance_count': str(args.nproc_per_node), | |||
| 'instance_list': instance_list, | |||
| }) | |||
| hccn_table['para_plane_nic_location'] = 'device' | |||
| hccn_table['para_plane_nic_name'] = [] | |||
| for instance_id in range(args.nproc_per_node): | |||
| eth_id = visible_devices[instance_id] | |||
| hccn_table['para_plane_nic_name'].append('eth{}'.format(eth_id)) | |||
| hccn_table['para_plane_nic_num'] = str(args.nproc_per_node) | |||
| hccn_table['status'] = 'completed' | |||
| # save hccn_table to file | |||
| table_path = os.getcwd() | |||
| if not os.path.exists(table_path): | |||
| os.mkdir(table_path) | |||
| table_fn = os.path.join(table_path, | |||
| 'rank_table_{}p_{}_{}.json'.format(args.nproc_per_node, usable_dev, args.server_id)) | |||
| with open(table_fn, 'w') as table_fp: | |||
| json.dump(hccn_table, table_fp, indent=4) | |||
| sys.stdout.flush() | |||
| # spawn the processes | |||
| current_env = os.environ.copy() | |||
| current_env["RANK_SIZE"] = str(args.nproc_per_node) | |||
| if args.nproc_per_node > 1: | |||
| current_env["MINDSPORE_HCCL_CONFIG_PATH"] = table_fn | |||
| processes = [] | |||
| cmds = [] | |||
| for rank_id in range(0, args.nproc_per_node): | |||
| current_env["RANK_ID"] = str(rank_id) | |||
| current_env["DEVICE_ID"] = visible_devices[rank_id] | |||
| cmd = [sys.executable, "-u"] | |||
| cmd.append(args.training_script) | |||
| cmd.extend(args.training_script_args) | |||
| process = subprocess.Popen(cmd, env=current_env) | |||
| processes.append(process) | |||
| cmds.append(cmd) | |||
| for process, cmd in zip(processes, cmds): | |||
| process.wait() | |||
| if process.returncode != 0: | |||
| raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) | |||
| if __name__ == "__main__": | |||
| main() | |||
| @@ -0,0 +1,54 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """learning rate generator""" | |||
| import math | |||
| import numpy as np | |||
| def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch): | |||
| """ | |||
| generate learning rate array | |||
| Args: | |||
| global_step(int): total steps of the training | |||
| lr_init(float): init learning rate | |||
| lr_end(float): end learning rate | |||
| lr_max(float): max learning rate | |||
| warmup_epochs(int): number of warmup epochs | |||
| total_epochs(int): total epoch of training | |||
| steps_per_epoch(int): steps of one epoch | |||
| Returns: | |||
| np.array, learning rate array | |||
| """ | |||
| lr_each_step = [] | |||
| total_steps = steps_per_epoch * total_epochs | |||
| warmup_steps = steps_per_epoch * warmup_epochs | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = lr_init + (lr_max - lr_init) * i / warmup_steps | |||
| else: | |||
| lr = lr_end + \ | |||
| (lr_max - lr_end) * \ | |||
| (1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2. | |||
| if lr < 0.0: | |||
| lr = 0.0 | |||
| lr_each_step.append(lr) | |||
| current_step = global_step | |||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||
| learning_rate = lr_each_step[current_step:] | |||
| return learning_rate | |||
| @@ -0,0 +1,33 @@ | |||
| #!/usr/bin/env bash | |||
| if [ $# != 2 ] | |||
| then | |||
| echo "Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH]" | |||
| exit 1 | |||
| fi | |||
| if [ ! -d $1 ] | |||
| then | |||
| echo "error: DATASET_PATH=$1 is not a directory" | |||
| exit 1 | |||
| fi | |||
| if [ ! -f $2 ] | |||
| then | |||
| echo "error: CHECKPOINT_PATH=$2 is not a file" | |||
| exit 1 | |||
| fi | |||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | |||
| export DEVICE_ID=0 | |||
| export RANK_ID=0 | |||
| export RANK_SIZE=1 | |||
| if [ -d "eval" ]; | |||
| then | |||
| rm -rf ./eval | |||
| fi | |||
| mkdir ./eval | |||
| cd ./eval || exit | |||
| python ${BASEPATH}/eval.py \ | |||
| --checkpoint_path=$2 \ | |||
| --dataset_path=$1 &> infer.log & # dataset val folder path | |||
| @@ -0,0 +1,33 @@ | |||
| #!/usr/bin/env bash | |||
| if [ $# != 4 ] | |||
| then | |||
| echo "Usage: sh run_train.sh [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]" | |||
| exit 1 | |||
| fi | |||
| if [ $1 -lt 1 ] && [ $1 -gt 8 ] | |||
| then | |||
| echo "error: DEVICE_NUM=$1 is not in (1-8)" | |||
| exit 1 | |||
| fi | |||
| if [ ! -d $4 ] | |||
| then | |||
| echo "error: DATASET_PATH=$4 is not a directory" | |||
| exit 1 | |||
| fi | |||
| BASEPATH=$(cd "`dirname $0`" || exit; pwd) | |||
| export PYTHONPATH=${BASEPATH}:$PYTHONPATH | |||
| if [ -d "train" ]; | |||
| then | |||
| rm -rf ./train | |||
| fi | |||
| mkdir ./train | |||
| cd ./train || exit | |||
| python ${BASEPATH}/launch.py \ | |||
| --nproc_per_node=$1 \ | |||
| --visible_devices=$3 \ | |||
| --server_id=$2 \ | |||
| --training_script=${BASEPATH}/train.py \ | |||
| --dataset_path=$4 &> train.log & # dataset train folder | |||
| @@ -0,0 +1,149 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train_imagenet.""" | |||
| import os | |||
| import time | |||
| import argparse | |||
| import random | |||
| import numpy as np | |||
| from dataset import create_dataset | |||
| from lr_generator import get_lr | |||
| from config import config | |||
| from mindspore import context | |||
| from mindspore import Tensor | |||
| from mindspore.model_zoo.mobilenet import mobilenet_v2 | |||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits | |||
| from mindspore.train.model import Model, ParallelMode | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| import mindspore.dataset.engine as de | |||
| from mindspore.communication.management import init | |||
| random.seed(1) | |||
| np.random.seed(1) | |||
| de.config.set_seed(1) | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| args_opt = parser.parse_args() | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| rank_id = int(os.getenv('RANK_ID')) | |||
| rank_size = int(os.getenv('RANK_SIZE')) | |||
| run_distribute = rank_size > 1 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) | |||
| context.set_context(enable_task_sink=True) | |||
| context.set_context(enable_loop_sink=True) | |||
| context.set_context(enable_mem_reuse=True) | |||
| class Monitor(Callback): | |||
| """ | |||
| Monitor loss and time. | |||
| Args: | |||
| lr_init (numpy array): train lr | |||
| Returns: | |||
| None. | |||
| Examples: | |||
| >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) | |||
| """ | |||
| def __init__(self, lr_init=None): | |||
| super(Monitor, self).__init__() | |||
| self.lr_init = lr_init | |||
| self.lr_init_len = len(lr_init) | |||
| def epoch_begin(self, run_context): | |||
| self.losses = [] | |||
| self.epoch_time = time.time() | |||
| def epoch_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| epoch_mseconds = (time.time() - self.epoch_time) * 1000 | |||
| per_step_mseconds = epoch_mseconds / cb_params.batch_num | |||
| print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, | |||
| per_step_mseconds, | |||
| np.mean(self.losses) | |||
| ), flush=True) | |||
| def step_begin(self, run_context): | |||
| self.step_time = time.time() | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| step_mseconds = (time.time() - self.step_time) * 1000 | |||
| step_loss = cb_params.net_outputs | |||
| if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor): | |||
| step_loss = step_loss[0] | |||
| if isinstance(step_loss, Tensor): | |||
| step_loss = np.mean(step_loss.asnumpy()) | |||
| self.losses.append(step_loss) | |||
| cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num | |||
| print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format( | |||
| cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, | |||
| np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]), flush=True) | |||
| if __name__ == '__main__': | |||
| if run_distribute: | |||
| context.set_context(enable_hccl=True) | |||
| context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL, | |||
| parameter_broadcast=True, mirror_mean=True) | |||
| auto_parallel_context().set_all_reduce_fusion_split_indices([140]) | |||
| init() | |||
| else: | |||
| context.set_context(enable_hccl=False) | |||
| epoch_size = config.epoch_size | |||
| net = mobilenet_v2(num_classes=config.num_classes) | |||
| loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') | |||
| print("train args: ", args_opt, "\ncfg: ", config, | |||
| "\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size)) | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, | |||
| repeat_num=epoch_size, batch_size=config.batch_size) | |||
| step_size = dataset.get_dataset_size() | |||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | |||
| lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config.lr, | |||
| warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size)) | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | |||
| config.weight_decay, config.loss_scale) | |||
| model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, amp_level='O0', | |||
| keep_batchnorm_fp32=False) | |||
| cb = None | |||
| if rank_id == 0: | |||
| cb = [Monitor(lr_init=lr.asnumpy())] | |||
| if config.save_checkpoint: | |||
| config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size, | |||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||
| ckpt_cb = ModelCheckpoint(prefix="mobilenet", directory=config.save_checkpoint_path, config=config_ck) | |||
| cb += [ckpt_cb] | |||
| model.train(epoch_size, dataset, callbacks=cb) | |||
| @@ -0,0 +1,284 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """MobileNetV2 model define""" | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops.operations import TensorAdd | |||
| from mindspore import Parameter, Tensor | |||
| from mindspore.common.initializer import initializer | |||
| __all__ = ['MobileNetV2', 'mobilenet_v2'] | |||
| def _make_divisible(v, divisor, min_value=None): | |||
| """ | |||
| This function is taken from the original tf repo. | |||
| It ensures that all layers have a channel number that is divisible by 8 | |||
| It can be seen here: | |||
| https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py | |||
| :param v: | |||
| :param divisor: | |||
| :param min_value: | |||
| :return: | |||
| """ | |||
| if min_value is None: | |||
| min_value = divisor | |||
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |||
| # Make sure that round down does not go down by more than 10%. | |||
| if new_v < 0.9 * v: | |||
| new_v += divisor | |||
| return new_v | |||
| class GlobalAvgPooling(nn.Cell): | |||
| """ | |||
| Global avg pooling definition. | |||
| Args: | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> GlobalAvgPooling() | |||
| """ | |||
| def __init__(self): | |||
| super(GlobalAvgPooling, self).__init__() | |||
| self.mean = P.ReduceMean(keep_dims=False) | |||
| def construct(self, x): | |||
| x = self.mean(x, (2, 3)) | |||
| return x | |||
| class DepthwiseConv(nn.Cell): | |||
| """ | |||
| Depthwise Convolution warpper definition. | |||
| Args: | |||
| in_planes (int): Input channel. | |||
| kernel_size (int): Input kernel size. | |||
| stride (int): Stride size. | |||
| pad_mode (str): pad mode in (pad, same, valid) | |||
| channel_multiplier (int): Output channel multiplier | |||
| has_bias (bool): has bias or not | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1) | |||
| """ | |||
| def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False): | |||
| super(DepthwiseConv, self).__init__() | |||
| self.has_bias = has_bias | |||
| self.in_channels = in_planes | |||
| self.channel_multiplier = channel_multiplier | |||
| self.out_channels = in_planes * channel_multiplier | |||
| self.kernel_size = (kernel_size, kernel_size) | |||
| self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier, kernel_size=kernel_size, | |||
| stride=stride, pad_mode=pad_mode, pad=pad) | |||
| self.bias_add = P.BiasAdd() | |||
| weight_shape = [channel_multiplier, in_planes, *self.kernel_size] | |||
| self.weight = Parameter(initializer('ones', weight_shape), name='weight') | |||
| if has_bias: | |||
| bias_shape = [channel_multiplier * in_planes] | |||
| self.bias = Parameter(initializer('zeros', bias_shape), name='bias') | |||
| else: | |||
| self.bias = None | |||
| def construct(self, x): | |||
| output = self.depthwise_conv(x, self.weight) | |||
| if self.has_bias: | |||
| output = self.bias_add(output, self.bias) | |||
| return output | |||
| class ConvBNReLU(nn.Cell): | |||
| """ | |||
| Convolution/Depthwise fused with Batchnorm and ReLU block definition. | |||
| Args: | |||
| in_planes (int): Input channel. | |||
| out_planes (int): Output channel. | |||
| kernel_size (int): Input kernel size. | |||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||
| groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1) | |||
| """ | |||
| def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | |||
| super(ConvBNReLU, self).__init__() | |||
| padding = (kernel_size - 1) // 2 | |||
| if groups == 1: | |||
| conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', | |||
| padding=padding) | |||
| else: | |||
| conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding) | |||
| layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()] | |||
| self.features = nn.SequentialCell(layers) | |||
| def construct(self, x): | |||
| output = self.features(x) | |||
| return output | |||
| class InvertedResidual(nn.Cell): | |||
| """ | |||
| Mobilenetv2 residual block definition. | |||
| Args: | |||
| inp (int): Input channel. | |||
| oup (int): Output channel. | |||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||
| expand_ratio (int): expand ration of input channel | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> ResidualBlock(3, 256, 1, 1) | |||
| """ | |||
| def __init__(self, inp, oup, stride, expand_ratio): | |||
| super(InvertedResidual, self).__init__() | |||
| assert stride in [1, 2] | |||
| hidden_dim = int(round(inp * expand_ratio)) | |||
| self.use_res_connect = stride == 1 and inp == oup | |||
| layers = [] | |||
| if expand_ratio != 1: | |||
| layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | |||
| layers.extend([ | |||
| # dw | |||
| ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | |||
| # pw-linear | |||
| nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False), | |||
| nn.BatchNorm2d(oup), | |||
| ]) | |||
| self.conv = nn.SequentialCell(layers) | |||
| self.add = TensorAdd() | |||
| self.cast = P.Cast() | |||
| def construct(self, x): | |||
| identity = x | |||
| x = self.conv(x) | |||
| if self.use_res_connect: | |||
| return self.add(identity, x) | |||
| return x | |||
| class MobileNetV2(nn.Cell): | |||
| """ | |||
| MobileNetV2 architecture. | |||
| Args: | |||
| class_num (Cell): number of classes. | |||
| width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1. | |||
| has_dropout (bool): Is dropout used. Default is false | |||
| inverted_residual_setting (list): Inverted residual settings. Default is None | |||
| round_nearest (list): Channel round to . Default is 8 | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> MobileNetV2(num_classes=1000) | |||
| """ | |||
| def __init__(self, num_classes=1000, width_mult=1., | |||
| has_dropout=False, inverted_residual_setting=None, round_nearest=8): | |||
| super(MobileNetV2, self).__init__() | |||
| block = InvertedResidual | |||
| input_channel = 32 | |||
| last_channel = 1280 | |||
| # setting of inverted residual blocks | |||
| self.cfgs = inverted_residual_setting | |||
| if inverted_residual_setting is None: | |||
| self.cfgs = [ | |||
| # t, c, n, s | |||
| [1, 16, 1, 1], | |||
| [6, 24, 2, 2], | |||
| [6, 32, 3, 2], | |||
| [6, 64, 4, 2], | |||
| [6, 96, 3, 1], | |||
| [6, 160, 3, 2], | |||
| [6, 320, 1, 1], | |||
| ] | |||
| # building first layer | |||
| input_channel = _make_divisible(input_channel * width_mult, round_nearest) | |||
| self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) | |||
| features = [ConvBNReLU(3, input_channel, stride=2)] | |||
| # building inverted residual blocks | |||
| for t, c, n, s in self.cfgs: | |||
| output_channel = _make_divisible(c * width_mult, round_nearest) | |||
| for i in range(n): | |||
| stride = s if i == 0 else 1 | |||
| features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | |||
| input_channel = output_channel | |||
| # building last several layers | |||
| features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1)) | |||
| # make it nn.CellList | |||
| self.features = nn.SequentialCell(features) | |||
| # mobilenet head | |||
| head = ([GlobalAvgPooling(), nn.Dense(self.out_channels, num_classes, has_bias=True)] if not has_dropout else | |||
| [GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(self.out_channels, num_classes, has_bias=True)]) | |||
| self.head = nn.SequentialCell(head) | |||
| self._initialize_weights() | |||
| def construct(self, x): | |||
| x = self.features(x) | |||
| x = self.head(x) | |||
| return x | |||
| def _initialize_weights(self): | |||
| """ | |||
| Initialize weights. | |||
| Args: | |||
| Returns: | |||
| None. | |||
| Examples: | |||
| >>> _initialize_weights() | |||
| """ | |||
| for _, m in self.cells_and_names(): | |||
| if isinstance(m, (nn.Conv2d, DepthwiseConv)): | |||
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |||
| m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n), | |||
| m.weight.data.shape()).astype("float32"))) | |||
| if m.bias is not None: | |||
| m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) | |||
| elif isinstance(m, nn.BatchNorm2d): | |||
| m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape(), dtype="float32"))) | |||
| m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape(), dtype="float32"))) | |||
| elif isinstance(m, nn.Dense): | |||
| m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape()).astype("float32"))) | |||
| if m.bias is not None: | |||
| m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) | |||
| def mobilenet_v2(**kwargs): | |||
| """ | |||
| Constructs a MobileNet V2 model | |||
| """ | |||
| return MobileNetV2(**kwargs) | |||