|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """MobileNetV2 model define"""
- import numpy as np
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore.ops.operations import TensorAdd
- from mindspore import Parameter, Tensor
- from mindspore.common.initializer import initializer
-
- __all__ = ['MobileNetV2', 'mobilenet_v2']
-
-
- def _make_divisible(v, divisor, min_value=None):
- """
- This function is taken from the original tf repo.
- It ensures that all layers have a channel number that is divisible by 8
- It can be seen here:
- https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
- :param v:
- :param divisor:
- :param min_value:
- :return:
- """
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- # Make sure that round down does not go down by more than 10%.
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
-
-
- class GlobalAvgPooling(nn.Cell):
- """
- Global avg pooling definition.
-
- Args:
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> GlobalAvgPooling()
- """
- def __init__(self):
- super(GlobalAvgPooling, self).__init__()
- self.mean = P.ReduceMean(keep_dims=False)
-
- def construct(self, x):
- x = self.mean(x, (2, 3))
- return x
-
-
- class DepthwiseConv(nn.Cell):
- """
- Depthwise Convolution warpper definition.
-
- Args:
- in_planes (int): Input channel.
- kernel_size (int): Input kernel size.
- stride (int): Stride size.
- pad_mode (str): pad mode in (pad, same, valid)
- channel_multiplier (int): Output channel multiplier
- has_bias (bool): has bias or not
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
- """
- def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
- super(DepthwiseConv, self).__init__()
- self.has_bias = has_bias
- self.in_channels = in_planes
- self.channel_multiplier = channel_multiplier
- self.out_channels = in_planes * channel_multiplier
- self.kernel_size = (kernel_size, kernel_size)
- self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier, kernel_size=kernel_size,
- stride=stride, pad_mode=pad_mode, pad=pad)
- self.bias_add = P.BiasAdd()
- weight_shape = [channel_multiplier, in_planes, *self.kernel_size]
- self.weight = Parameter(initializer('ones', weight_shape), name='weight')
-
- if has_bias:
- bias_shape = [channel_multiplier * in_planes]
- self.bias = Parameter(initializer('zeros', bias_shape), name='bias')
- else:
- self.bias = None
-
- def construct(self, x):
- output = self.depthwise_conv(x, self.weight)
- if self.has_bias:
- output = self.bias_add(output, self.bias)
- return output
-
-
- class ConvBNReLU(nn.Cell):
- """
- Convolution/Depthwise fused with Batchnorm and ReLU block definition.
-
- Args:
- in_planes (int): Input channel.
- out_planes (int): Output channel.
- kernel_size (int): Input kernel size.
- stride (int): Stride size for the first convolutional layer. Default: 1.
- groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
- """
- def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
- super(ConvBNReLU, self).__init__()
- padding = (kernel_size - 1) // 2
- if groups == 1:
- conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
- padding=padding)
- else:
- conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
- layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
- self.features = nn.SequentialCell(layers)
-
- def construct(self, x):
- output = self.features(x)
- return output
-
-
- class InvertedResidual(nn.Cell):
- """
- Mobilenetv2 residual block definition.
-
- Args:
- inp (int): Input channel.
- oup (int): Output channel.
- stride (int): Stride size for the first convolutional layer. Default: 1.
- expand_ratio (int): expand ration of input channel
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> ResidualBlock(3, 256, 1, 1)
- """
- def __init__(self, inp, oup, stride, expand_ratio):
- super(InvertedResidual, self).__init__()
- assert stride in [1, 2]
-
- hidden_dim = int(round(inp * expand_ratio))
- self.use_res_connect = stride == 1 and inp == oup
-
- layers = []
- if expand_ratio != 1:
- layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
- layers.extend([
- # dw
- ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
- nn.BatchNorm2d(oup),
- ])
- self.conv = nn.SequentialCell(layers)
- self.add = TensorAdd()
- self.cast = P.Cast()
-
- def construct(self, x):
- identity = x
- x = self.conv(x)
- if self.use_res_connect:
- return self.add(identity, x)
- return x
-
-
- class MobileNetV2(nn.Cell):
- """
- MobileNetV2 architecture.
-
- Args:
- class_num (Cell): number of classes.
- width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
- has_dropout (bool): Is dropout used. Default is false
- inverted_residual_setting (list): Inverted residual settings. Default is None
- round_nearest (list): Channel round to . Default is 8
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> MobileNetV2(num_classes=1000)
- """
- def __init__(self, num_classes=1000, width_mult=1.,
- has_dropout=False, inverted_residual_setting=None, round_nearest=8):
- super(MobileNetV2, self).__init__()
- block = InvertedResidual
- input_channel = 32
- last_channel = 1280
- # setting of inverted residual blocks
- self.cfgs = inverted_residual_setting
- if inverted_residual_setting is None:
- self.cfgs = [
- # t, c, n, s
- [1, 16, 1, 1],
- [6, 24, 2, 2],
- [6, 32, 3, 2],
- [6, 64, 4, 2],
- [6, 96, 3, 1],
- [6, 160, 3, 2],
- [6, 320, 1, 1],
- ]
-
- # building first layer
- input_channel = _make_divisible(input_channel * width_mult, round_nearest)
- self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
- features = [ConvBNReLU(3, input_channel, stride=2)]
- # building inverted residual blocks
- for t, c, n, s in self.cfgs:
- output_channel = _make_divisible(c * width_mult, round_nearest)
- for i in range(n):
- stride = s if i == 0 else 1
- features.append(block(input_channel, output_channel, stride, expand_ratio=t))
- input_channel = output_channel
- # building last several layers
- features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
- # make it nn.CellList
- self.features = nn.SequentialCell(features)
- # mobilenet head
- head = ([GlobalAvgPooling(), nn.Dense(self.out_channels, num_classes, has_bias=True)] if not has_dropout else
- [GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(self.out_channels, num_classes, has_bias=True)])
- self.head = nn.SequentialCell(head)
-
- self._initialize_weights()
-
- def construct(self, x):
- x = self.features(x)
- x = self.head(x)
- return x
-
- def _initialize_weights(self):
- """
- Initialize weights.
-
- Args:
-
- Returns:
- None.
-
- Examples:
- >>> _initialize_weights()
- """
- for _, m in self.cells_and_names():
- if isinstance(m, (nn.Conv2d, DepthwiseConv)):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
- m.weight.data.shape()).astype("float32")))
- if m.bias is not None:
- m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
- elif isinstance(m, nn.BatchNorm2d):
- m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
- m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
- elif isinstance(m, nn.Dense):
- m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape()).astype("float32")))
- if m.bias is not None:
- m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
-
-
- def mobilenet_v2(**kwargs):
- """
- Constructs a MobileNet V2 model
- """
- return MobileNetV2(**kwargs)
|