Merge pull request !7805 from yihuaijie/mastertags/v1.1.0
| @@ -117,6 +117,17 @@ bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) { | |||
| std::vector<bool> ExtractInputParameterByNode(const CNodePtr &node) { | |||
| std::vector<bool> is_parameter; | |||
| std::vector<AnfNodePtr> node_inputs{node->inputs()}; | |||
| // input is a ValueList or ValueTuple, then all inputs are not parameter. | |||
| if ((node_inputs.size() == 2) && | |||
| (IsValueNode<ValueList>(node_inputs[1]) || IsValueNode<ValueTuple>(node_inputs[1]))) { | |||
| std::vector<ValuePtr> inputs_seq; | |||
| if (IsValueNode<ValueList>(node_inputs[1])) { | |||
| inputs_seq = node_inputs[1]->cast<ValueNodePtr>()->value()->cast<ValueListPtr>()->value(); | |||
| } else { | |||
| inputs_seq = node_inputs[1]->cast<ValueNodePtr>()->value()->cast<ValueTuplePtr>()->value(); | |||
| } | |||
| return std::vector<bool>(inputs_seq.size(), false); | |||
| } | |||
| if ((node_inputs.size() == 2) && | |||
| (AnfNodeIsPrimitive(node_inputs[1], MAKE_TUPLE) || AnfNodeIsPrimitive(node_inputs[1], MAKE_LIST))) { | |||
| node_inputs = node_inputs[1]->cast<CNodePtr>()->inputs(); | |||
| @@ -195,6 +206,22 @@ std::vector<size_t> ExtractInputTypeLengthByNode(const CNodePtr &node) { | |||
| std::vector<size_t> inputs_type_len; | |||
| std::vector<AnfNodePtr> node_inputs{node->inputs()}; | |||
| if ((node_inputs.size() == 2) && | |||
| (IsValueNode<ValueList>(node_inputs[1]) || IsValueNode<ValueTuple>(node_inputs[1]))) { | |||
| std::vector<ValuePtr> inputs_seq; | |||
| if (IsValueNode<ValueList>(node_inputs[1])) { | |||
| inputs_seq = node_inputs[1]->cast<ValueNodePtr>()->value()->cast<ValueListPtr>()->value(); | |||
| } else { | |||
| inputs_seq = node_inputs[1]->cast<ValueNodePtr>()->value()->cast<ValueTuplePtr>()->value(); | |||
| } | |||
| for (auto &ele : inputs_seq) { | |||
| auto tensor = ele->cast<tensor::TensorPtr>(); | |||
| MS_EXCEPTION_IF_NULL(tensor); | |||
| inputs_type_len.push_back(GetLengthOfDataType(tensor->Dtype())); | |||
| } | |||
| return inputs_type_len; | |||
| } | |||
| if ((node_inputs.size() == 2) && | |||
| (AnfNodeIsPrimitive(node_inputs[1], MAKE_TUPLE) || AnfNodeIsPrimitive(node_inputs[1], MAKE_LIST))) { | |||
| node_inputs = node_inputs[1]->cast<CNodePtr>()->inputs(); | |||
| @@ -533,6 +533,58 @@ void SplitTensor(const AnfNodePtr &node, const CNodePtr &next_node, int index) { | |||
| } | |||
| } | |||
| void SplitTensorList(const AnfNodePtr &node, const CNodePtr &next_node, int index) { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| MS_EXCEPTION_IF_NULL(next_node); | |||
| if (next_node->inputs().size() != 2 || index != 1) { | |||
| MS_LOG(INFO) << next_node->fullname_with_scope() << " Inputs must have only one input, get " | |||
| << next_node->inputs().size() - 1 << " index should be 1, get " << index; | |||
| return; | |||
| } | |||
| OperatorInfoPtr op_info = next_node->user_data<OperatorInfo>(); | |||
| MS_EXCEPTION_IF_NULL(op_info); | |||
| std::vector<ValuePtr> inputs_values; | |||
| if (IsValueNode<ValueList>(node)) { | |||
| inputs_values = node->cast<ValueNodePtr>()->value()->cast<ValueListPtr>()->value(); | |||
| } else { | |||
| inputs_values = node->cast<ValueNodePtr>()->value()->cast<ValueTuplePtr>()->value(); | |||
| } | |||
| if (inputs_values.size() != op_info->inputs_tensor_info().size()) { | |||
| MS_LOG(EXCEPTION) << "The inputs size " << inputs_values.size() << ", is not equal to inputs shape size " | |||
| << op_info->inputs_tensor_info().size(); | |||
| } | |||
| std::vector<AnfNodePtr> make_tuple_inputs = {NewValueNode(prim::kPrimMakeTuple)}; | |||
| FuncGraphPtr func_graph = next_node->func_graph(); | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| FuncGraphManagerPtr manager = func_graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| ScopePtr scope = next_node->scope(); | |||
| MS_EXCEPTION_IF_NULL(scope); | |||
| for (size_t i = 0; i < inputs_values.size(); ++i) { | |||
| auto value_ptr = inputs_values[i]; | |||
| auto tensor = value_ptr->cast<tensor::TensorPtr>(); | |||
| MS_EXCEPTION_IF_NULL(tensor); | |||
| TensorInfo tensor_info = op_info->inputs_tensor_info()[i]; | |||
| TensorLayout tensor_layout = tensor_info.tensor_layout(); | |||
| auto value_node = NewValueNode(value_ptr)->cast<AnfNodePtr>(); | |||
| Operator op = CreateGetTensorSliceOp(tensor_layout); | |||
| std::vector<AnfNodePtr> node_input = CreateInput(op, value_node, SPLIT_TENSOR); | |||
| CNodePtr new_node = func_graph->NewCNode(node_input); | |||
| new_node->set_in_forward_flag(true); | |||
| auto new_node_value = node_input[0]->cast<ValueNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(new_node_value); | |||
| PrimitivePtr new_node_prim = new_node_value->value()->cast<PrimitivePtr>(); | |||
| new_node_prim->set_instance_name(SPLIT_TENSOR); | |||
| new_node_prim->set_attr("keep_value_node_input", MakeValue(true)); | |||
| new_node->set_scope(scope); | |||
| node_input[0]->set_scope(scope); | |||
| make_tuple_inputs.push_back(new_node); | |||
| } | |||
| CNodePtr make_tuple = func_graph->NewCNode(make_tuple_inputs); | |||
| manager->Replace(node, make_tuple); | |||
| } | |||
| void StepSplitTensor(const AnfNodePtr &node, const FuncGraphManagerPtr &manager) { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| @@ -550,7 +602,11 @@ void StepSplitTensor(const AnfNodePtr &node, const FuncGraphManagerPtr &manager) | |||
| continue; | |||
| } | |||
| if (IsParallelCareNode(use_cnode)) { | |||
| SplitTensor(node, use_cnode, node_pair.second); | |||
| if (IsValueNode<ValueList>(node) || IsValueNode<ValueTuple>(node)) { | |||
| SplitTensorList(node, use_cnode, node_pair.second); | |||
| } else { | |||
| SplitTensor(node, use_cnode, node_pair.second); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -852,6 +908,11 @@ void InsertMirrorOps(const MirrorOps &mirror_ops, const CNodePtr &node) { | |||
| FuncGraphManagerPtr manager = func_graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| if ((node->inputs().size() == 2) && (IsValueNode<ValueSequeue>(node->input(1)))) { | |||
| MS_LOG(INFO) << "Input is ValueList, skip it."; | |||
| return; | |||
| } | |||
| if ((node->inputs().size() == 2) && | |||
| (AnfNodeIsPrimitive(node->input(1), MAKE_TUPLE) || AnfNodeIsPrimitive(node->input(1), MAKE_LIST))) { | |||
| MS_LOG(INFO) << "The mirror for " << GetPrimName(node) << " has handle by make_tuple node"; | |||
| @@ -1049,9 +1110,34 @@ StrategyPtr ExtractStrategy(std::unordered_map<std::string, ValuePtr> attrs) { | |||
| return strategyPtr; | |||
| } | |||
| Shapes GetValueListShape(const AnfNodePtr &node) { | |||
| Shapes shapes; | |||
| std::vector<ValuePtr> inputs_seq; | |||
| if (IsValueNode<ValueList>(node)) { | |||
| inputs_seq = node->cast<ValueNodePtr>()->value()->cast<ValueListPtr>()->value(); | |||
| } else if (IsValueNode<ValueTuple>(node)) { | |||
| inputs_seq = node->cast<ValueNodePtr>()->value()->cast<ValueTuplePtr>()->value(); | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "node is eigther ValueList or ValueTuple"; | |||
| } | |||
| for (auto &ele : inputs_seq) { | |||
| auto tensor = ele->cast<tensor::TensorPtr>(); | |||
| MS_EXCEPTION_IF_NULL(tensor); | |||
| auto one_shape = tensor->shape(); | |||
| Shape shape_64; | |||
| (void)std::transform(one_shape.begin(), one_shape.end(), std::back_inserter(shape_64), | |||
| [](const int &value) { return static_cast<int64_t>(value); }); | |||
| shapes.push_back(shape_64); | |||
| } | |||
| return shapes; | |||
| } | |||
| Shapes GetNodeShape(const AnfNodePtr &node) { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| Shapes shapes; | |||
| if (IsValueNode<ValueList>(node) || IsValueNode<ValueTuple>(node)) { | |||
| return GetValueListShape(node); | |||
| } | |||
| BaseShapePtr base_shape_ptr = node->Shape(); | |||
| if (node->isa<CNode>()) { | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| @@ -1177,7 +1263,8 @@ std::vector<Shapes> ExtractShape(const CNodePtr &node) { | |||
| std::pair<AnfNodePtr, int> node_pair = std::make_pair(node, SizeToInt(i)); | |||
| g_RefMap[parameters[0]] = node_pair; | |||
| input_shapes = GetRefKeyNodeShape(input, func_graph); | |||
| } else if (IsValueNode<Tensor>(input) || input->isa<CNode>() || input->isa<Parameter>()) { | |||
| } else if (IsValueNode<Tensor>(input) || input->isa<CNode>() || input->isa<Parameter>() || | |||
| ((IsValueNode<ValueList>(input) || IsValueNode<ValueTuple>(input)) && (inputs_size == 2))) { | |||
| input_shapes = GetNodeShape(input); | |||
| } else { | |||
| continue; | |||
| @@ -2334,7 +2421,7 @@ void ParallelCommunication(const FuncGraphPtr &root, const std::vector<AnfNodePt | |||
| } | |||
| HandleSpecialNode(distribute_operator, cnode); | |||
| } else if (IsValueNode<Tensor>(node)) { | |||
| } else if (IsValueNode<Tensor>(node) || IsValueNode<ValueList>(node) || IsValueNode<ValueTuple>(node)) { | |||
| StepSplitTensor(node, manager); | |||
| } | |||
| } | |||
| @@ -20,6 +20,7 @@ import mindspore.nn as nn | |||
| from mindspore.common.api import _executor | |||
| from mindspore.nn import TrainOneStepCell, Momentum | |||
| from mindspore.ops import operations as P | |||
| from mindspore.nn import Dense, Flatten | |||
| class Net(nn.Cell): | |||
| @@ -71,12 +72,67 @@ class Net2(nn.Cell): | |||
| return out | |||
| class PackConstantNet1(nn.Cell): | |||
| def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None): | |||
| super().__init__() | |||
| weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32) | |||
| bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32) | |||
| self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32)) | |||
| self.flat = Flatten() | |||
| self.dense = Dense(in_channels=dense_in_channel, | |||
| out_channels=dense_out_channel, | |||
| weight_init=Tensor(weight_np), | |||
| bias_init=Tensor(bias_np), | |||
| has_bias=True) | |||
| self.mul = P.Mul() | |||
| self.pack = P.Pack(axis) | |||
| if strategy is not None: | |||
| self.pack.shard(strategy) | |||
| def construct(self, inputs): | |||
| x = self.pack([self.pack_con, self.pack_con, self.pack_con, self.pack_con, | |||
| self.pack_con, self.pack_con, self.pack_con, self.pack_con]) | |||
| x1 = self.flat(x) | |||
| x2 = self.flat(inputs) | |||
| x = self.mul(x1, x2) | |||
| x = self.dense(x) | |||
| return x | |||
| class PackConstantNet2(nn.Cell): | |||
| def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None): | |||
| super().__init__() | |||
| weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32) | |||
| bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32) | |||
| self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32)) | |||
| self.flat = Flatten() | |||
| self.dense = Dense(in_channels=dense_in_channel, | |||
| out_channels=dense_out_channel, | |||
| weight_init=Tensor(weight_np), | |||
| bias_init=Tensor(bias_np), | |||
| has_bias=True) | |||
| self.mul = P.Mul() | |||
| self.pack = P.Pack(axis) | |||
| if strategy is not None: | |||
| self.pack.shard(strategy) | |||
| def construct(self, inputs): | |||
| x = self.pack((self.pack_con, self.pack_con, self.pack_con, self.pack_con, | |||
| self.pack_con, self.pack_con, self.pack_con, self.pack_con)) | |||
| x1 = self.flat(x) | |||
| x2 = self.flat(inputs) | |||
| x = self.mul(x1, x2) | |||
| x = self.dense(x) | |||
| return x | |||
| _w1 = Tensor(np.ones([48, 64]), dtype=ms.float32) | |||
| _w2 = Tensor(np.ones([48, 64]), dtype=ms.float32) | |||
| _w3 = Tensor(np.ones([48, 64]), dtype=ms.float32) | |||
| _x = Tensor(np.ones([2, 48, 64]), dtype=ms.float32) | |||
| _x1 = Tensor(np.ones([48, 64]), dtype=ms.float32) | |||
| _x2 = Tensor(np.ones([3, 48, 64]), dtype=ms.float32) | |||
| _x_c = Tensor(np.ones([8, 8, 8]), dtype=ms.float32) | |||
| def compile_net(net): | |||
| @@ -109,6 +165,15 @@ def compile_net2(net): | |||
| context.reset_auto_parallel_context() | |||
| def compile_net_con(net): | |||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| _executor.compile(train_net, _x_c) | |||
| context.reset_auto_parallel_context() | |||
| def test_pack_parameter(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| strategy1 = ((4, 2), (4, 2)) | |||
| @@ -189,3 +254,24 @@ def test_pack_auto_parallel_3_tensor(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net = Net2(_w1, _w2, _w3) | |||
| compile_net2(net) | |||
| def test_pack_constant1(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8), | |||
| strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1))) | |||
| compile_net_con(net) | |||
| def test_pack_constant2(): | |||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||
| net = PackConstantNet2(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8), | |||
| strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1))) | |||
| compile_net_con(net) | |||
| def test_pack_auto_constant(): | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||
| net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8), | |||
| strategy=((8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1))) | |||
| compile_net_con(net) | |||