|
|
|
@@ -24,7 +24,7 @@ import mindspore.dataset as de |
|
|
|
from mindspore import Tensor, context |
|
|
|
from mindspore import log as logger |
|
|
|
from tests.st.networks.models.bert.src.bert_model import BertModel |
|
|
|
from .generate_model import AddNet, bert_net_cfg |
|
|
|
from .generate_model import bert_net_cfg |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
|
|
|
|
@@ -32,32 +32,6 @@ random.seed(1) |
|
|
|
np.random.seed(1) |
|
|
|
de.config.set_seed(1) |
|
|
|
|
|
|
|
def test_add(): |
|
|
|
channel = grpc.insecure_channel('localhost:5500') |
|
|
|
stub = ms_service_pb2_grpc.MSServiceStub(channel) |
|
|
|
request = ms_service_pb2.PredictRequest() |
|
|
|
|
|
|
|
x = request.data.add() |
|
|
|
x.tensor_shape.dims.extend([4]) |
|
|
|
x.tensor_type = ms_service_pb2.MS_FLOAT32 |
|
|
|
x.data = (np.ones([4]).astype(np.float32)).tobytes() |
|
|
|
|
|
|
|
y = request.data.add() |
|
|
|
y.tensor_shape.dims.extend([4]) |
|
|
|
y.tensor_type = ms_service_pb2.MS_FLOAT32 |
|
|
|
y.data = (np.ones([4]).astype(np.float32)).tobytes() |
|
|
|
|
|
|
|
result = stub.Predict(request) |
|
|
|
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims) |
|
|
|
print("ms client received: ") |
|
|
|
print(result_np) |
|
|
|
|
|
|
|
net = AddNet() |
|
|
|
net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32))) |
|
|
|
print("add net out: ") |
|
|
|
print(net_out) |
|
|
|
assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True) |
|
|
|
|
|
|
|
def test_bert(): |
|
|
|
MAX_MESSAGE_LENGTH = 0x7fffffff |
|
|
|
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) |
|
|
|
|