Merge pull request !5201 from hexia/st_optimization_timetags/v1.0.0
| @@ -24,7 +24,7 @@ import mindspore.dataset as de | |||||
| from mindspore import Tensor, context | from mindspore import Tensor, context | ||||
| from mindspore import log as logger | from mindspore import log as logger | ||||
| from tests.st.networks.models.bert.src.bert_model import BertModel | from tests.st.networks.models.bert.src.bert_model import BertModel | ||||
| from .generate_model import AddNet, bert_net_cfg | |||||
| from .generate_model import bert_net_cfg | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | ||||
| @@ -32,32 +32,6 @@ random.seed(1) | |||||
| np.random.seed(1) | np.random.seed(1) | ||||
| de.config.set_seed(1) | de.config.set_seed(1) | ||||
| def test_add(): | |||||
| channel = grpc.insecure_channel('localhost:5500') | |||||
| stub = ms_service_pb2_grpc.MSServiceStub(channel) | |||||
| request = ms_service_pb2.PredictRequest() | |||||
| x = request.data.add() | |||||
| x.tensor_shape.dims.extend([4]) | |||||
| x.tensor_type = ms_service_pb2.MS_FLOAT32 | |||||
| x.data = (np.ones([4]).astype(np.float32)).tobytes() | |||||
| y = request.data.add() | |||||
| y.tensor_shape.dims.extend([4]) | |||||
| y.tensor_type = ms_service_pb2.MS_FLOAT32 | |||||
| y.data = (np.ones([4]).astype(np.float32)).tobytes() | |||||
| result = stub.Predict(request) | |||||
| result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims) | |||||
| print("ms client received: ") | |||||
| print(result_np) | |||||
| net = AddNet() | |||||
| net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32))) | |||||
| print("add net out: ") | |||||
| print(net_out) | |||||
| assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True) | |||||
| def test_bert(): | def test_bert(): | ||||
| MAX_MESSAGE_LENGTH = 0x7fffffff | MAX_MESSAGE_LENGTH = 0x7fffffff | ||||
| input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) | input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) | ||||
| @@ -15,11 +15,9 @@ | |||||
| import random | import random | ||||
| import numpy as np | import numpy as np | ||||
| import mindspore.nn as nn | |||||
| import mindspore.common.dtype as mstype | import mindspore.common.dtype as mstype | ||||
| import mindspore.dataset as de | import mindspore.dataset as de | ||||
| from mindspore import Tensor, context | from mindspore import Tensor, context | ||||
| from mindspore.ops import operations as P | |||||
| from mindspore.train.serialization import export | from mindspore.train.serialization import export | ||||
| from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig | from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig | ||||
| @@ -50,20 +48,6 @@ random.seed(1) | |||||
| np.random.seed(1) | np.random.seed(1) | ||||
| de.config.set_seed(1) | de.config.set_seed(1) | ||||
| class AddNet(nn.Cell): | |||||
| def __init__(self): | |||||
| super(AddNet, self).__init__() | |||||
| self.add = P.TensorAdd() | |||||
| def construct(self, x_, y_): | |||||
| return self.add(x_, y_) | |||||
| def export_add_model(): | |||||
| net = AddNet() | |||||
| x = np.ones(4).astype(np.float32) | |||||
| y = np.ones(4).astype(np.float32) | |||||
| export(net, Tensor(x), Tensor(y), file_name='add.mindir', file_format='MINDIR') | |||||
| def export_bert_model(): | def export_bert_model(): | ||||
| input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) | input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) | ||||
| segment_ids = np.zeros((2, 32), dtype=np.int32) | segment_ids = np.zeros((2, 32), dtype=np.int32) | ||||
| @@ -73,5 +57,4 @@ def export_bert_model(): | |||||
| file_name='bert.mindir', file_format='MINDIR') | file_name='bert.mindir', file_format='MINDIR') | ||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| export_add_model() | |||||
| export_bert_model() | export_bert_model() | ||||
| @@ -41,7 +41,7 @@ prepare_model() | |||||
| python3 generate_model.py &> generate_model_serving.log | python3 generate_model.py &> generate_model_serving.log | ||||
| echo "### end to generate mode for serving test ###" | echo "### end to generate mode for serving test ###" | ||||
| result=`ls -l | grep -E '*mindir' | grep -v ".log" | wc -l` | result=`ls -l | grep -E '*mindir' | grep -v ".log" | wc -l` | ||||
| if [ ${result} -ne 2 ] | |||||
| if [ ${result} -ne 1 ] | |||||
| then | then | ||||
| cat generate_model_serving.log | cat generate_model_serving.log | ||||
| echo "### generate model for serving test failed ###" && exit 1 | echo "### generate model for serving test failed ###" && exit 1 | ||||
| @@ -98,13 +98,6 @@ pytest_serving() | |||||
| echo "### $1 client end ###" | echo "### $1 client end ###" | ||||
| } | } | ||||
| test_add_model() | |||||
| { | |||||
| start_service 5500 add.mindir ${ENV_DEVICE_ID} | |||||
| pytest_serving test_add | |||||
| clean_pid | |||||
| } | |||||
| test_bert_model() | test_bert_model() | ||||
| { | { | ||||
| start_service 5500 bert.mindir ${ENV_DEVICE_ID} | start_service 5500 bert.mindir ${ENV_DEVICE_ID} | ||||
| @@ -115,5 +108,4 @@ test_bert_model() | |||||
| echo "-----serving start-----" | echo "-----serving start-----" | ||||
| rm -rf ms_serving *.log *.mindir *.dat ${CURRPATH}/model ${CURRPATH}/kernel_meta | rm -rf ms_serving *.log *.mindir *.dat ${CURRPATH}/model ${CURRPATH}/kernel_meta | ||||
| prepare_model | prepare_model | ||||
| test_add_model | |||||
| test_bert_model | test_bert_model | ||||