|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457 |
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test control ops """
- import numpy as np
- import pytest
-
- from mindspore import dtype as ms
- from mindspore import Tensor
- from mindspore import context
- from mindspore import nn
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- # from tests.vm_impl.math_ops_vm_impl import *
- # from tests.vm_impl.vm_interface import *
- # from tests.vm_impl import *
- # context.set_context(save_graphs=True)
-
-
- grad_by_list = C.GradOperation(get_by_list=True)
- grad_all = C.GradOperation(get_all=True)
-
-
- def test_while_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
-
- def construct(self, idx, end, x):
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- idx = idx + 1
- return x
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_while_with_const_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.mul = P.Mul()
- self.add = P.Add()
-
- def construct(self, x, y):
- while x < y:
- z = self.mul(x, x)
- x = self.add(z, 1)
- return x
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor([1.1], dtype=ms.float32)
- end = Tensor([8.0], dtype=ms.float32)
- graph_output = net(idx, end)
- expect_one = np.array([1.14433983e+02], dtype=np.float32)
- expect_two = np.array([0], dtype=np.float32)
- assert np.allclose(graph_output[0].asnumpy(), expect_one, 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), expect_two, 0.0001, 0.0001)
-
- def test_while_with_variable_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.mul = P.Mul()
- self.add = P.Add()
-
- def construct(self, x, y):
- while x < y:
- z = self.mul(x, x)
- x = self.add(z, y)
- return x
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor([1.1], dtype=ms.float32)
- end = Tensor([8.0], dtype=ms.float32)
- graph_output = net(idx, end)
- expect_one = np.array([2.20000005e+00], dtype=np.float32)
- expect_two = np.array([1.00000000e+00], dtype=np.float32)
- assert np.allclose(graph_output[0].asnumpy(), expect_one, 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), expect_two, 0.0001, 0.0001)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_while_with_param_forward():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- out = out + x + self.param
- idx = idx + 1
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = MyWhileNet()
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- expect = np.array([[[6, 8], [10, 12]], [[19, 22], [25, 28]]], dtype=np.int32)
- assert np.allclose(graph_output.asnumpy(), expect, 0.0001, 0.0001)
-
-
- def test_while_endless_case():
- """endless case when optimization"""
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- out = out + part
- idx = idx + 1
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = MyWhileNet()
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_while_with_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- out = out + x + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- expect = np.array([[[2, 2], [2, 2]], [[2, 2], [2, 2]]], dtype=np.int32)
- assert np.allclose(graph_output[0].asnumpy(), expect, 0.0001, 0.0001)
-
- def test_while_with_param_forward_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = while_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_while_opt_endless():
- """endless during optimization case"""
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.addn = P.AddN()
-
- def construct(self, idx, end, x):
- addn1 = self.addn((x, x, x))
- out = addn1
- while idx < end:
- out = self.addn((out, addn1))
- idx = idx + 1
- out = self.addn((out, x))
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32) * 3, dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_no_while_call():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = while_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_while_with_param_grad_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_for_while_with_param_grad_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = self.zero
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_for_while_with_param_grad_basic():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = self.zero
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_for_while_with_param_grad_normal():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = x
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad_mul():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.ones(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out * self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad_two():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.weight = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="loss")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param + self.weight
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad_three():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.weight = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="loss")
- self.key = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="key")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param + self.weight + self.key
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
-
- def test_while_if_with_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if self.max(out) < self.max(x):
- out = out + self.param * 2
- else:
- out = out + self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_grad_not_enter_while():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param * 3
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(3), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_with_param_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param
- else:
- out = out + x
- if a == b:
- out = out + x*3 + self.param
- else:
- out = out + x*2
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_with_param_if_by_if_grad_inputs():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 4
- if a == b:
- out = out + x*3 + self.param * 3
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
-
- def test_with_param_if_by_if_grad_parameter():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 2
- if a == b:
- out = out + x*3 + self.param
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_with_param_if_by_if_grad_param_excute_null():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 2
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(4), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_if_by_if_return_inside_grad():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- return out + x + self.param
- if a == b:
- return out + self.param * 2
- return out + self.param * 3
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(1), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(4), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_if_by_if_forward_control_tuple_switch():
- """tuple_get from switch op will generate new switch inside to eliminate tuple_get"""
- class Branch3Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- return a, b, x
- class Branch2Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch3Net()
-
- def construct(self, a, b, x):
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- return self.net(a, b, x)
-
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch2Net()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- a, b, x = self.net(a, b, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
-
- def test_if_by_if_forward_control_inside_net():
- class Branch3Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- a = a * b
- out = a + b + x
- return out
- class Branch2Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch3Net()
-
- def construct(self, a, b, x):
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- return self.net(a, b, x)
-
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch2Net()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- out = self.net(a, b, x)
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
- def test_if_by_if_forward_use_namespace():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if a < b:
- a = P.Add()(a, b)
- else:
- a = P.Sub()(a, b)
- if a == x:
- a = P.Mul()(a, b)
- else:
- a = P.RealDiv()(a, b)
- if b == x:
- b = P.Add()(a, b)
- else:
- b = P.Add()(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_if_by_if_forward_use_global_op():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.Add()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if a < b:
- a = add(a, b)
- else:
- a = sub(a, b)
- if a == x:
- a = mul(a, b)
- else:
- a = div(a, b)
- if b == x:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_for_with_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
-
- def construct(self, a, b, x):
- for _ in range(0, 4):
- if a < b:
- a = self.add(a, b)
- else:
- b = self.sub(b, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
- def test_for_with_if_by_if_forward_namespace():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- for _ in range(0, 6):
- if a < b:
- a = P.Add()(a, b)
- else:
- b = P.Sub()(b, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
- def test_if_by_if_forward_const_branch_inner():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.Add()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if a < b:
- a = add(a, b)
- else:
- a = sub(a, b)
- if 2 > 1:
- a = mul(a, b)
- else:
- a = div(a, b)
- if b == x:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
-
- def test_if_by_if_forward_all_const_branch():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.Add()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if 2 < 12:
- a = add(a, b)
- else:
- a = sub(a, b)
- if 2 > 1:
- a = mul(a, b)
- else:
- a = div(a, b)
- if 2 == 1:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_if_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- b = 2
- if a > 0:
- b = 1
- a += b
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_if_by_if_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- b = 2
- if a > 0:
- b = 1
- if a < 0:
- b = 0
- if a == 0:
- b = 3
- a += b
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_while_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- while a > 1:
- a = a - 1
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_if_by_while_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- b = 2
- if a > 0:
- b = 0
- while a > 1:
- a = a - 1
- a += b
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
|