|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test control ops """
- import numpy as np
- import pytest
-
- from mindspore import dtype as ms
- from mindspore import Tensor
- from mindspore import context
- from mindspore import nn
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- # from tests.vm_impl.math_ops_vm_impl import *
- # from tests.vm_impl.vm_interface import *
- # from tests.vm_impl import *
- # context.set_context(save_graphs=True)
-
-
- grad_by_list = C.GradOperation(get_by_list=True)
- grad_all = C.GradOperation(get_all=True)
-
-
- def test_while_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
-
- def construct(self, idx, end, x):
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- idx = idx + 1
- return x
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_while_with_const_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.mul = P.Mul()
- self.add = P.Add()
-
- def construct(self, x, y):
- while x < y:
- z = self.mul(x, x)
- x = self.add(z, 1)
- return x
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor([1.1], dtype=ms.float32)
- end = Tensor([8.0], dtype=ms.float32)
- graph_output = net(idx, end)
- expect_one = np.array([1.14433983e+02], dtype=np.float32)
- expect_two = np.array([0], dtype=np.float32)
- assert np.allclose(graph_output[0].asnumpy(), expect_one, 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), expect_two, 0.0001, 0.0001)
-
- def test_while_with_variable_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.mul = P.Mul()
- self.add = P.Add()
-
- def construct(self, x, y):
- while x < y:
- z = self.mul(x, x)
- x = self.add(z, y)
- return x
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor([1.1], dtype=ms.float32)
- end = Tensor([8.0], dtype=ms.float32)
- graph_output = net(idx, end)
- expect_one = np.array([2.20000005e+00], dtype=np.float32)
- expect_two = np.array([1.00000000e+00], dtype=np.float32)
- assert np.allclose(graph_output[0].asnumpy(), expect_one, 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), expect_two, 0.0001, 0.0001)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_while_with_param_forward():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- out = out + x + self.param
- idx = idx + 1
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = MyWhileNet()
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- expect = np.array([[[6, 8], [10, 12]], [[19, 22], [25, 28]]], dtype=np.int32)
- assert np.allclose(graph_output.asnumpy(), expect, 0.0001, 0.0001)
-
-
- def test_while_endless_case():
- """endless case when optimization"""
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- out = out + part
- idx = idx + 1
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = MyWhileNet()
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_while_with_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- part = x[idx, :, :]
- max_num = self.max(part)
- x[idx, :, 0:2] = max_num
- out = out + x + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.arange(8).reshape(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- expect = np.array([[[2, 2], [2, 2]], [[2, 2], [2, 2]]], dtype=np.int32)
- assert np.allclose(graph_output[0].asnumpy(), expect, 0.0001, 0.0001)
-
- def test_while_with_param_forward_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = while_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_while_opt_endless():
- """endless during optimization case"""
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.addn = P.AddN()
-
- def construct(self, idx, end, x):
- addn1 = self.addn((x, x, x))
- out = addn1
- while idx < end:
- out = self.addn((out, addn1))
- idx = idx + 1
- out = self.addn((out, x))
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32) * 3, dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_no_while_call():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = while_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_while_with_param_grad_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_for_while_with_param_grad_with_const_branch():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = self.zero
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- if 2 > 1:
- out = out + self.param
- else:
- out = out + idx + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_for_while_with_param_grad_basic():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = self.zero
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_for_while_with_param_grad_normal():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.reduce = P.ReduceSum()
- self.start = Tensor(np.array(0), dtype=ms.int32)
-
- def construct(self, idx, end, x):
- out = x
- for _ in range(0, 2):
- idx = self.start
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad_mul():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.ones(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out * self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad_two():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.weight = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="loss")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param + self.weight
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_basic_grad_three():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.weight = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="loss")
- self.key = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="key")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param + self.weight + self.key
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
-
- def test_while_if_with_param_grad():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
- self.t2 = Tensor(np.array(2), dtype=ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- if self.max(out) < self.max(x):
- out = out + self.param * 2
- else:
- out = out + self.param
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(3), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_while_with_param_grad_not_enter_while():
- class MyWhileNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, idx, end, x):
- out = self.zero
- while idx < end:
- out = out + self.param * 3
- idx = idx + 1
- return out + self.param
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, a, b, c):
- return grad_by_list(self.net, self.weights)(a, b, c)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- while_net = MyWhileNet()
- net = GradNet(while_net)
- idx = Tensor(np.array(3), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_with_param_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param
- else:
- out = out + x
- if a == b:
- out = out + x*3 + self.param
- else:
- out = out + x*2
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(4), dtype=ms.int32)
- x = Tensor(np.ones([2, 2, 2]).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_with_param_if_by_if_grad_inputs():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 4
- if a == b:
- out = out + x*3 + self.param * 3
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
-
- def construct(self, *inputs):
- return grad_all(self.net)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[1].asnumpy(), pynative_output[1].asnumpy(), 0.0001, 0.0001)
- assert np.allclose(graph_output[2].asnumpy(), pynative_output[2].asnumpy(), 0.0001, 0.0001)
-
- def test_with_param_if_by_if_grad_parameter():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 2
- if a == b:
- out = out + x*3 + self.param
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(0), dtype=ms.int32)
- end = Tensor(np.array(2), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_with_param_if_by_if_grad_param_excute_null():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- out = out + x + self.param * 2
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(4), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_if_by_if_return_inside_grad():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.max = P.ReduceMax()
- self.param = Parameter(Tensor(np.arange(2 * 2 * 2).reshape((2, 2, 2)), ms.float32), name="weight")
- self.zero = Tensor(np.zeros(([2, 2, 2])), ms.float32)
-
- def construct(self, a, b, x):
- out = self.zero
- if a < b:
- return out + x + self.param
- if a == b:
- return out + self.param * 2
- return out + self.param * 3
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- return grad_by_list(self.net, self.weights)(*inputs)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = GradNet(if_net)
- idx = Tensor(np.array(1), dtype=ms.int32)
- end = Tensor(np.array(0), dtype=ms.int32)
- x = Tensor(np.random.randn(2, 2, 2).astype(np.float32), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output[0].asnumpy(), pynative_output[0].asnumpy(), 0.0001, 0.0001)
-
- def test_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(4), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_if_by_if_forward_control_tuple_switch():
- """tuple_get from switch op will generate new switch inside to eliminate tuple_get"""
- class Branch3Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- return a, b, x
- class Branch2Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch3Net()
-
- def construct(self, a, b, x):
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- return self.net(a, b, x)
-
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch2Net()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- a, b, x = self.net(a, b, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
-
- def test_if_by_if_forward_control_inside_net():
- class Branch3Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if b == x:
- b = self.add(a, b)
- else:
- b = self.add(a, x)
- a = a * b
- out = a + b + x
- return out
- class Branch2Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch3Net()
-
- def construct(self, a, b, x):
- if a == x:
- a = self.mul(a, b)
- else:
- a = self.div(a, b)
- return self.net(a, b, x)
-
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.net = Branch2Net()
-
- def construct(self, a, b, x):
- if a < b:
- a = self.add(a, b)
- else:
- a = self.sub(a, b)
- out = self.net(a, b, x)
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
- def test_if_by_if_forward_use_namespace():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- if a < b:
- a = P.Add()(a, b)
- else:
- a = P.Sub()(a, b)
- if a == x:
- a = P.Mul()(a, b)
- else:
- a = P.RealDiv()(a, b)
- if b == x:
- b = P.Add()(a, b)
- else:
- b = P.Add()(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_if_by_if_forward_use_global_op():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.Add()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if a < b:
- a = add(a, b)
- else:
- a = sub(a, b)
- if a == x:
- a = mul(a, b)
- else:
- a = div(a, b)
- if b == x:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- def test_for_with_if_by_if_forward():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
-
- def construct(self, a, b, x):
- for _ in range(0, 4):
- if a < b:
- a = self.add(a, b)
- else:
- b = self.sub(b, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
- def test_for_with_if_by_if_forward_namespace():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- for _ in range(0, 6):
- if a < b:
- a = P.Add()(a, b)
- else:
- b = P.Sub()(b, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
- def test_if_by_if_forward_const_branch_inner():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.Add()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if a < b:
- a = add(a, b)
- else:
- a = sub(a, b)
- if 2 > 1:
- a = mul(a, b)
- else:
- a = div(a, b)
- if b == x:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
-
-
- def test_if_by_if_forward_all_const_branch():
- class MyIfByIfNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
-
- def construct(self, a, b, x):
- add = P.Add()
- sub = P.Sub()
- mul = P.Mul()
- div = P.RealDiv()
- if 2 < 12:
- a = add(a, b)
- else:
- a = sub(a, b)
- if 2 > 1:
- a = mul(a, b)
- else:
- a = div(a, b)
- if 2 == 1:
- b = add(a, b)
- else:
- b = add(a, x)
- a = a * b
- out = a + b + x
- return out
- # graph mode
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if_net = MyIfByIfNet()
- net = if_net
- idx = Tensor(np.array(2), dtype=ms.float32)
- end = Tensor(np.array(3), dtype=ms.float32)
- x = Tensor(np.array(0), dtype=ms.float32)
- graph_output = net(idx, end, x)
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- pynative_output = net(idx, end, x)
- assert np.allclose(graph_output.asnumpy(), pynative_output.asnumpy(), 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_if_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- b = 2
- if a > 0:
- b = 1
- a += b
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_if_by_if_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- b = 2
- if a > 0:
- b = 1
- if a < 0:
- b = 0
- if a == 0:
- b = 3
- a += b
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_while_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- while a > 1:
- a = a - 1
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_if_by_while_const_grad():
- class MyNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.add = P.Add()
-
- def construct(self, *inputs):
- out = self.add(*inputs)
- return out
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super(GradNet, self).__init__()
- self.net = net
- self.weights = ParameterTuple(net.trainable_params())
-
- def construct(self, *inputs):
- a = 1
- b = 2
- if a > 0:
- b = 0
- while a > 1:
- a = a - 1
- a += b
- return grad_by_list(self.net, self.weights)(*inputs)
-
- context.set_context(mode=context.GRAPH_MODE)
- my_net = MyNet()
- net = GradNet(my_net)
- a = Tensor(np.array(0), dtype=ms.int32)
- b = Tensor(np.array(1), dtype=ms.int32)
- net(a, b)
|