|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into air models"""
- import argparse
- import math as m
- import numpy as np
-
- from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
-
- from src.warpctc import StackedRNN, StackedRNNForGPU, StackedRNNForCPU
- from src.config import config
-
- parser = argparse.ArgumentParser(description="warpctc_export")
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--ckpt_file", type=str, required=True, help="warpctc ckpt file.")
- parser.add_argument("--file_name", type=str, default="warpctc", help="warpctc output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format")
- parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
- help="device target")
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- if args.file_format == "AIR" and args.device_target != "Ascend":
- raise ValueError("export AIR must on Ascend")
-
- if __name__ == "__main__":
- input_size = m.ceil(config.captcha_height / 64) * 64 * 3
- captcha_width = config.captcha_width
- captcha_height = config.captcha_height
- batch_size = config.batch_size
- hidden_size = config.hidden_size
- image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float32))
- if args.device_target == 'Ascend':
- net = StackedRNN(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size)
- image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float16))
- elif args.device_target == 'GPU':
- net = StackedRNNForGPU(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size)
- else:
- net = StackedRNNForCPU(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size)
- param_dict = load_checkpoint(args.ckpt_file)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- export(net, image, file_name=args.file_name, file_format=args.file_format)
|