You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.9 kB

5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """export checkpoint file into air models"""
  16. import argparse
  17. import math as m
  18. import numpy as np
  19. from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
  20. from src.warpctc import StackedRNN, StackedRNNForGPU, StackedRNNForCPU
  21. from src.config import config
  22. parser = argparse.ArgumentParser(description="warpctc_export")
  23. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  24. parser.add_argument("--ckpt_file", type=str, required=True, help="warpctc ckpt file.")
  25. parser.add_argument("--file_name", type=str, default="warpctc", help="warpctc output file name.")
  26. parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format")
  27. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  28. help="device target")
  29. args = parser.parse_args()
  30. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  31. if args.device_target == "Ascend":
  32. context.set_context(device_id=args.device_id)
  33. if args.file_format == "AIR" and args.device_target != "Ascend":
  34. raise ValueError("export AIR must on Ascend")
  35. if __name__ == "__main__":
  36. input_size = m.ceil(config.captcha_height / 64) * 64 * 3
  37. captcha_width = config.captcha_width
  38. captcha_height = config.captcha_height
  39. batch_size = config.batch_size
  40. hidden_size = config.hidden_size
  41. image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float32))
  42. if args.device_target == 'Ascend':
  43. net = StackedRNN(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size)
  44. image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float16))
  45. elif args.device_target == 'GPU':
  46. net = StackedRNNForGPU(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size)
  47. else:
  48. net = StackedRNNForCPU(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size)
  49. param_dict = load_checkpoint(args.ckpt_file)
  50. load_param_into_net(net, param_dict)
  51. net.set_train(False)
  52. export(net, image, file_name=args.file_name, file_format=args.file_format)