# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air models""" import argparse import math as m import numpy as np from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export from src.warpctc import StackedRNN, StackedRNNForGPU, StackedRNNForCPU from src.config import config parser = argparse.ArgumentParser(description="warpctc_export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--ckpt_file", type=str, required=True, help="warpctc ckpt file.") parser.add_argument("--file_name", type=str, default="warpctc", help="warpctc output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format") parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if args.file_format == "AIR" and args.device_target != "Ascend": raise ValueError("export AIR must on Ascend") if __name__ == "__main__": input_size = m.ceil(config.captcha_height / 64) * 64 * 3 captcha_width = config.captcha_width captcha_height = config.captcha_height batch_size = config.batch_size hidden_size = config.hidden_size image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float32)) if args.device_target == 'Ascend': net = StackedRNN(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size) image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float16)) elif args.device_target == 'GPU': net = StackedRNNForGPU(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size) else: net = StackedRNNForCPU(input_size=input_size, batch_size=batch_size, hidden_size=hidden_size) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) net.set_train(False) export(net, image, file_name=args.file_name, file_format=args.file_format)