|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- import mindspore.context as context
-
- class GatherNdNet(nn.Cell):
- def __init__(self):
- super(GatherNdNet, self).__init__()
- self.gathernd = P.GatherNd()
-
- def construct(self, x, indices):
- return self.gathernd(x, indices)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_gathernd0():
- x = Tensor(np.arange(3 * 2, dtype=np.float32).reshape(3, 2))
- indices = Tensor(np.array([[1, 1], [0, 1]]).astype(np.int32))
- expect = np.array([3., 1.])
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gathernd = GatherNdNet()
- output = gathernd(x, indices)
-
- error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_traning
- @pytest.mark.env_onecard
- def test_gathernd1():
- x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.float32).reshape(2, 3, 4, 5))
- indices = Tensor(np.array([[[[[l, k, j, i] for i in [1, 3, 4]] for j in range(4)]
- for k in range(3)] for l in range(2)], dtype='i4'))
- expect = np.array([[[[1., 3., 4.],
- [6., 8., 9.],
- [11., 13., 14.],
- [16., 18., 19.]],
-
- [[21., 23., 24.],
- [26., 28., 29.],
- [31., 33., 34.],
- [36., 38., 39.]],
-
- [[41., 43., 44.],
- [46., 48., 49.],
- [51., 53., 54.],
- [56., 58., 59.]]],
-
- [[[61., 63., 64.],
- [66., 68., 69.],
- [71., 73., 74.],
- [76., 78., 79.]],
-
- [[81., 83., 84.],
- [86., 88., 89.],
- [91., 93., 94.],
- [96., 98., 99.]],
-
- [[101., 103., 104.],
- [106., 108., 109.],
- [111., 113., 114.],
- [116., 118., 119.]]]])
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gather = GatherNdNet()
- output = gather(x, indices)
-
- error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_traning
- @pytest.mark.env_onecard
- def test_gathernd2():
- x = Tensor(np.array([[4., 5., 4., 1., 5.],
- [4., 9., 5., 6., 4.],
- [9., 8., 4., 3., 6.],
- [0., 4., 2., 2., 8.],
- [1., 8., 6., 2., 8.],
- [8., 1., 9., 7., 3.],
- [7., 9., 2., 5., 7.],
- [9., 8., 6., 8., 5.],
- [3., 7., 2., 7., 4.],
- [4., 2., 8., 2., 9.]]).astype(np.float16))
-
- indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32))
- expect = np.array([[0., 0., 0., 0., 0.],
- [4., 9., 5., 6., 4.],
- [0., 0., 0., 0., 0.]])
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gathernd = GatherNdNet()
- output = gathernd(x, indices)
-
- error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_traning
- @pytest.mark.env_onecard
- def test_gathernd3():
- x = Tensor(np.array([[4, 5, 4, 1, 5],
- [4, 9, 5, 6, 4],
- [9, 8, 4, 3, 6],
- [0, 4, 2, 2, 8],
- [1, 8, 6, 2, 8],
- [8, 1, 9, 7, 3],
- [7, 9, 2, 5, 7],
- [9, 8, 6, 8, 5],
- [3, 7, 2, 7, 4],
- [4, 2, 8, 2, 9]]
- ).astype(np.int32))
-
- indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32))
- expect = np.array([[0, 0, 0, 0, 0],
- [4, 9, 5, 6, 4],
- [0, 0, 0, 0, 0]])
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- gathernd = GatherNdNet()
- output = gathernd(x, indices)
-
- error = np.ones(shape=output.asnumpy().shape) * 1.0e-6
- diff = output.asnumpy() - expect
- assert np.all(diff < error)
- assert np.all(-diff < error)
|