# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import mindspore.context as context class GatherNdNet(nn.Cell): def __init__(self): super(GatherNdNet, self).__init__() self.gathernd = P.GatherNd() def construct(self, x, indices): return self.gathernd(x, indices) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gathernd0(): x = Tensor(np.arange(3 * 2, dtype=np.float32).reshape(3, 2)) indices = Tensor(np.array([[1, 1], [0, 1]]).astype(np.int32)) expect = np.array([3., 1.]) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gathernd = GatherNdNet() output = gathernd(x, indices) error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_traning @pytest.mark.env_onecard def test_gathernd1(): x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.float32).reshape(2, 3, 4, 5)) indices = Tensor(np.array([[[[[l, k, j, i] for i in [1, 3, 4]] for j in range(4)] for k in range(3)] for l in range(2)], dtype='i4')) expect = np.array([[[[1., 3., 4.], [6., 8., 9.], [11., 13., 14.], [16., 18., 19.]], [[21., 23., 24.], [26., 28., 29.], [31., 33., 34.], [36., 38., 39.]], [[41., 43., 44.], [46., 48., 49.], [51., 53., 54.], [56., 58., 59.]]], [[[61., 63., 64.], [66., 68., 69.], [71., 73., 74.], [76., 78., 79.]], [[81., 83., 84.], [86., 88., 89.], [91., 93., 94.], [96., 98., 99.]], [[101., 103., 104.], [106., 108., 109.], [111., 113., 114.], [116., 118., 119.]]]]) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gather = GatherNdNet() output = gather(x, indices) error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_traning @pytest.mark.env_onecard def test_gathernd2(): x = Tensor(np.array([[4., 5., 4., 1., 5.], [4., 9., 5., 6., 4.], [9., 8., 4., 3., 6.], [0., 4., 2., 2., 8.], [1., 8., 6., 2., 8.], [8., 1., 9., 7., 3.], [7., 9., 2., 5., 7.], [9., 8., 6., 8., 5.], [3., 7., 2., 7., 4.], [4., 2., 8., 2., 9.]]).astype(np.float16)) indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32)) expect = np.array([[0., 0., 0., 0., 0.], [4., 9., 5., 6., 4.], [0., 0., 0., 0., 0.]]) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gathernd = GatherNdNet() output = gathernd(x, indices) error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_traning @pytest.mark.env_onecard def test_gathernd3(): x = Tensor(np.array([[4, 5, 4, 1, 5], [4, 9, 5, 6, 4], [9, 8, 4, 3, 6], [0, 4, 2, 2, 8], [1, 8, 6, 2, 8], [8, 1, 9, 7, 3], [7, 9, 2, 5, 7], [9, 8, 6, 8, 5], [3, 7, 2, 7, 4], [4, 2, 8, 2, 9]] ).astype(np.int32)) indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32)) expect = np.array([[0, 0, 0, 0, 0], [4, 9, 5, 6, 4], [0, 0, 0, 0, 0]]) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gathernd = GatherNdNet() output = gathernd(x, indices) error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error)