You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train CTPN and get checkpoint files."""
  16. import os
  17. import time
  18. import argparse
  19. import ast
  20. import mindspore.common.dtype as mstype
  21. from mindspore import context, Tensor
  22. from mindspore.communication.management import init
  23. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
  24. from mindspore.train import Model
  25. from mindspore.context import ParallelMode
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.nn import Momentum
  28. from mindspore.common import set_seed
  29. from src.ctpn import CTPN
  30. from src.config import config, pretrain_config, finetune_config
  31. from src.dataset import create_ctpn_dataset
  32. from src.lr_schedule import dynamic_lr
  33. from src.network_define import LossCallBack, LossNet, WithLossCell, TrainOneStepCell
  34. from src.eval_utils import eval_for_ctpn, get_eval_result
  35. from src.eval_callback import EvalCallBack
  36. set_seed(1)
  37. parser = argparse.ArgumentParser(description="CTPN training")
  38. parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.")
  39. parser.add_argument("--pre_trained", type=str, default="", help="Pretrained file path.")
  40. parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.")
  41. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.")
  42. parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.")
  43. parser.add_argument("--task_type", type=str, default="Pretraining",\
  44. choices=['Pretraining', 'Finetune'], help="task type, default:Pretraining")
  45. parser.add_argument("--run_eval", type=ast.literal_eval, default=False, \
  46. help="Run evaluation when training, default is False.")
  47. parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True, \
  48. help="Save best checkpoint when run_eval is True, default is True.")
  49. parser.add_argument("--eval_image_path", type=str, default="", \
  50. help="eval image path, when run_eval is True, eval_image_path should be set.")
  51. parser.add_argument("--eval_dataset_path", type=str, default="", \
  52. help="eval dataset path, when run_eval is True, eval_dataset_path should be set.")
  53. parser.add_argument("--eval_start_epoch", type=int, default=10, \
  54. help="Evaluation start epoch when run_eval is True, default is 10.")
  55. parser.add_argument("--eval_interval", type=int, default=10, \
  56. help="Evaluation interval when run_eval is True, default is 10.")
  57. args_opt = parser.parse_args()
  58. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id, save_graphs=True)
  59. def apply_eval(eval_param):
  60. network = eval_param["eval_network"]
  61. eval_ds = eval_param["eval_dataset"]
  62. eval_image_path = eval_param["eval_image_path"]
  63. eval_for_ctpn(network, eval_ds, eval_image_path)
  64. hmean = get_eval_result()
  65. return hmean
  66. if __name__ == '__main__':
  67. if args_opt.run_distribute:
  68. rank = args_opt.rank_id
  69. device_num = args_opt.device_num
  70. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  71. gradients_mean=True)
  72. init()
  73. else:
  74. rank = 0
  75. device_num = 1
  76. if args_opt.task_type == "Pretraining":
  77. print("Start to do pretraining")
  78. mindrecord_file = config.pretraining_dataset_file
  79. training_cfg = pretrain_config
  80. else:
  81. print("Start to do finetune")
  82. mindrecord_file = config.finetune_dataset_file
  83. training_cfg = finetune_config
  84. print("CHECKING MINDRECORD FILES ...")
  85. while not os.path.exists(mindrecord_file + ".db"):
  86. time.sleep(5)
  87. print("CHECKING MINDRECORD FILES DONE!")
  88. loss_scale = float(config.loss_scale)
  89. # When create MindDataset, using the fitst mindrecord file, such as ctpn_pretrain.mindrecord0.
  90. dataset = create_ctpn_dataset(mindrecord_file, repeat_num=1,\
  91. batch_size=config.batch_size, device_num=device_num, rank_id=rank)
  92. dataset_size = dataset.get_dataset_size()
  93. net = CTPN(config=config, batch_size=config.batch_size)
  94. net = net.set_train()
  95. load_path = args_opt.pre_trained
  96. if args_opt.task_type == "Pretraining":
  97. print("load backbone vgg16 ckpt {}".format(args_opt.pre_trained))
  98. param_dict = load_checkpoint(load_path)
  99. for item in list(param_dict.keys()):
  100. if not item.startswith('vgg16_feature_extractor'):
  101. param_dict.pop(item)
  102. load_param_into_net(net, param_dict)
  103. else:
  104. if load_path != "":
  105. print("load pretrain ckpt {}".format(args_opt.pre_trained))
  106. param_dict = load_checkpoint(load_path)
  107. load_param_into_net(net, param_dict)
  108. loss = LossNet()
  109. lr = Tensor(dynamic_lr(training_cfg, dataset_size), mstype.float32)
  110. opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,\
  111. weight_decay=config.weight_decay, loss_scale=config.loss_scale)
  112. net_with_loss = WithLossCell(net, loss)
  113. if args_opt.run_distribute:
  114. net_with_grads = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, \
  115. mean=True, degree=device_num)
  116. else:
  117. net_with_grads = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale)
  118. time_cb = TimeMonitor(data_size=dataset_size)
  119. loss_cb = LossCallBack(rank_id=rank)
  120. cb = [time_cb, loss_cb]
  121. save_checkpoint_path = os.path.join(config.save_checkpoint_path, "ckpt_" + str(rank) + "/")
  122. if config.save_checkpoint:
  123. ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*dataset_size,
  124. keep_checkpoint_max=config.keep_checkpoint_max)
  125. ckpoint_cb = ModelCheckpoint(prefix='ctpn', directory=save_checkpoint_path, config=ckptconfig)
  126. cb += [ckpoint_cb]
  127. if args_opt.run_eval:
  128. if args_opt.eval_dataset_path is None or (not os.path.isfile(args_opt.eval_dataset_path)):
  129. raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path))
  130. if args_opt.eval_image_path is None or (not os.path.isdir(args_opt.eval_image_path)):
  131. raise ValueError("{} is not a existing path.".format(args_opt.eval_image_path))
  132. eval_dataset = create_ctpn_dataset(args_opt.eval_dataset_path, \
  133. batch_size=config.batch_size, repeat_num=1, is_training=False)
  134. eval_net = net
  135. eval_param_dict = {"eval_network": eval_net, "eval_dataset": eval_dataset, \
  136. "eval_image_path": args_opt.eval_image_path}
  137. eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
  138. eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True,
  139. ckpt_directory=save_checkpoint_path, besk_ckpt_name="best_acc.ckpt",
  140. metrics_name="hmean")
  141. cb += [eval_cb]
  142. model = Model(net_with_grads)
  143. model.train(training_cfg.total_epoch, dataset, callbacks=cb, dataset_sink_mode=True)