|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """train CTPN and get checkpoint files."""
- import os
- import time
- import argparse
- import ast
- import mindspore.common.dtype as mstype
- from mindspore import context, Tensor
- from mindspore.communication.management import init
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
- from mindspore.train import Model
- from mindspore.context import ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.nn import Momentum
- from mindspore.common import set_seed
- from src.ctpn import CTPN
- from src.config import config, pretrain_config, finetune_config
- from src.dataset import create_ctpn_dataset
- from src.lr_schedule import dynamic_lr
- from src.network_define import LossCallBack, LossNet, WithLossCell, TrainOneStepCell
- from src.eval_utils import eval_for_ctpn, get_eval_result
- from src.eval_callback import EvalCallBack
-
- set_seed(1)
-
- parser = argparse.ArgumentParser(description="CTPN training")
- parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.")
- parser.add_argument("--pre_trained", type=str, default="", help="Pretrained file path.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.")
- parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.")
- parser.add_argument("--task_type", type=str, default="Pretraining",\
- choices=['Pretraining', 'Finetune'], help="task type, default:Pretraining")
- parser.add_argument("--run_eval", type=ast.literal_eval, default=False, \
- help="Run evaluation when training, default is False.")
- parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True, \
- help="Save best checkpoint when run_eval is True, default is True.")
- parser.add_argument("--eval_image_path", type=str, default="", \
- help="eval image path, when run_eval is True, eval_image_path should be set.")
- parser.add_argument("--eval_dataset_path", type=str, default="", \
- help="eval dataset path, when run_eval is True, eval_dataset_path should be set.")
- parser.add_argument("--eval_start_epoch", type=int, default=10, \
- help="Evaluation start epoch when run_eval is True, default is 10.")
- parser.add_argument("--eval_interval", type=int, default=10, \
- help="Evaluation interval when run_eval is True, default is 10.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id, save_graphs=True)
-
- def apply_eval(eval_param):
- network = eval_param["eval_network"]
- eval_ds = eval_param["eval_dataset"]
- eval_image_path = eval_param["eval_image_path"]
- eval_for_ctpn(network, eval_ds, eval_image_path)
- hmean = get_eval_result()
- return hmean
-
- if __name__ == '__main__':
- if args_opt.run_distribute:
- rank = args_opt.rank_id
- device_num = args_opt.device_num
- context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- init()
- else:
- rank = 0
- device_num = 1
- if args_opt.task_type == "Pretraining":
- print("Start to do pretraining")
- mindrecord_file = config.pretraining_dataset_file
- training_cfg = pretrain_config
- else:
- print("Start to do finetune")
- mindrecord_file = config.finetune_dataset_file
- training_cfg = finetune_config
-
- print("CHECKING MINDRECORD FILES ...")
- while not os.path.exists(mindrecord_file + ".db"):
- time.sleep(5)
-
- print("CHECKING MINDRECORD FILES DONE!")
-
- loss_scale = float(config.loss_scale)
-
- # When create MindDataset, using the fitst mindrecord file, such as ctpn_pretrain.mindrecord0.
- dataset = create_ctpn_dataset(mindrecord_file, repeat_num=1,\
- batch_size=config.batch_size, device_num=device_num, rank_id=rank)
- dataset_size = dataset.get_dataset_size()
- net = CTPN(config=config, batch_size=config.batch_size)
- net = net.set_train()
-
- load_path = args_opt.pre_trained
- if args_opt.task_type == "Pretraining":
- print("load backbone vgg16 ckpt {}".format(args_opt.pre_trained))
- param_dict = load_checkpoint(load_path)
- for item in list(param_dict.keys()):
- if not item.startswith('vgg16_feature_extractor'):
- param_dict.pop(item)
- load_param_into_net(net, param_dict)
- else:
- if load_path != "":
- print("load pretrain ckpt {}".format(args_opt.pre_trained))
- param_dict = load_checkpoint(load_path)
- load_param_into_net(net, param_dict)
- loss = LossNet()
- lr = Tensor(dynamic_lr(training_cfg, dataset_size), mstype.float32)
- opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,\
- weight_decay=config.weight_decay, loss_scale=config.loss_scale)
- net_with_loss = WithLossCell(net, loss)
- if args_opt.run_distribute:
- net_with_grads = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, \
- mean=True, degree=device_num)
- else:
- net_with_grads = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale)
-
- time_cb = TimeMonitor(data_size=dataset_size)
- loss_cb = LossCallBack(rank_id=rank)
- cb = [time_cb, loss_cb]
- save_checkpoint_path = os.path.join(config.save_checkpoint_path, "ckpt_" + str(rank) + "/")
- if config.save_checkpoint:
- ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*dataset_size,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix='ctpn', directory=save_checkpoint_path, config=ckptconfig)
- cb += [ckpoint_cb]
- if args_opt.run_eval:
- if args_opt.eval_dataset_path is None or (not os.path.isfile(args_opt.eval_dataset_path)):
- raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path))
- if args_opt.eval_image_path is None or (not os.path.isdir(args_opt.eval_image_path)):
- raise ValueError("{} is not a existing path.".format(args_opt.eval_image_path))
- eval_dataset = create_ctpn_dataset(args_opt.eval_dataset_path, \
- batch_size=config.batch_size, repeat_num=1, is_training=False)
- eval_net = net
- eval_param_dict = {"eval_network": eval_net, "eval_dataset": eval_dataset, \
- "eval_image_path": args_opt.eval_image_path}
- eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
- eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True,
- ckpt_directory=save_checkpoint_path, besk_ckpt_name="best_acc.ckpt",
- metrics_name="hmean")
- cb += [eval_cb]
- model = Model(net_with_grads)
- model.train(training_cfg.total_epoch, dataset, callbacks=cb, dataset_sink_mode=True)
|