# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train CTPN and get checkpoint files.""" import os import time import argparse import ast import mindspore.common.dtype as mstype from mindspore import context, Tensor from mindspore.communication.management import init from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor from mindspore.train import Model from mindspore.context import ParallelMode from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn import Momentum from mindspore.common import set_seed from src.ctpn import CTPN from src.config import config, pretrain_config, finetune_config from src.dataset import create_ctpn_dataset from src.lr_schedule import dynamic_lr from src.network_define import LossCallBack, LossNet, WithLossCell, TrainOneStepCell from src.eval_utils import eval_for_ctpn, get_eval_result from src.eval_callback import EvalCallBack set_seed(1) parser = argparse.ArgumentParser(description="CTPN training") parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.") parser.add_argument("--pre_trained", type=str, default="", help="Pretrained file path.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.") parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.") parser.add_argument("--task_type", type=str, default="Pretraining",\ choices=['Pretraining', 'Finetune'], help="task type, default:Pretraining") parser.add_argument("--run_eval", type=ast.literal_eval, default=False, \ help="Run evaluation when training, default is False.") parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True, \ help="Save best checkpoint when run_eval is True, default is True.") parser.add_argument("--eval_image_path", type=str, default="", \ help="eval image path, when run_eval is True, eval_image_path should be set.") parser.add_argument("--eval_dataset_path", type=str, default="", \ help="eval dataset path, when run_eval is True, eval_dataset_path should be set.") parser.add_argument("--eval_start_epoch", type=int, default=10, \ help="Evaluation start epoch when run_eval is True, default is 10.") parser.add_argument("--eval_interval", type=int, default=10, \ help="Evaluation interval when run_eval is True, default is 10.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id, save_graphs=True) def apply_eval(eval_param): network = eval_param["eval_network"] eval_ds = eval_param["eval_dataset"] eval_image_path = eval_param["eval_image_path"] eval_for_ctpn(network, eval_ds, eval_image_path) hmean = get_eval_result() return hmean if __name__ == '__main__': if args_opt.run_distribute: rank = args_opt.rank_id device_num = args_opt.device_num context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() else: rank = 0 device_num = 1 if args_opt.task_type == "Pretraining": print("Start to do pretraining") mindrecord_file = config.pretraining_dataset_file training_cfg = pretrain_config else: print("Start to do finetune") mindrecord_file = config.finetune_dataset_file training_cfg = finetune_config print("CHECKING MINDRECORD FILES ...") while not os.path.exists(mindrecord_file + ".db"): time.sleep(5) print("CHECKING MINDRECORD FILES DONE!") loss_scale = float(config.loss_scale) # When create MindDataset, using the fitst mindrecord file, such as ctpn_pretrain.mindrecord0. dataset = create_ctpn_dataset(mindrecord_file, repeat_num=1,\ batch_size=config.batch_size, device_num=device_num, rank_id=rank) dataset_size = dataset.get_dataset_size() net = CTPN(config=config, batch_size=config.batch_size) net = net.set_train() load_path = args_opt.pre_trained if args_opt.task_type == "Pretraining": print("load backbone vgg16 ckpt {}".format(args_opt.pre_trained)) param_dict = load_checkpoint(load_path) for item in list(param_dict.keys()): if not item.startswith('vgg16_feature_extractor'): param_dict.pop(item) load_param_into_net(net, param_dict) else: if load_path != "": print("load pretrain ckpt {}".format(args_opt.pre_trained)) param_dict = load_checkpoint(load_path) load_param_into_net(net, param_dict) loss = LossNet() lr = Tensor(dynamic_lr(training_cfg, dataset_size), mstype.float32) opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,\ weight_decay=config.weight_decay, loss_scale=config.loss_scale) net_with_loss = WithLossCell(net, loss) if args_opt.run_distribute: net_with_grads = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, \ mean=True, degree=device_num) else: net_with_grads = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale) time_cb = TimeMonitor(data_size=dataset_size) loss_cb = LossCallBack(rank_id=rank) cb = [time_cb, loss_cb] save_checkpoint_path = os.path.join(config.save_checkpoint_path, "ckpt_" + str(rank) + "/") if config.save_checkpoint: ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*dataset_size, keep_checkpoint_max=config.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix='ctpn', directory=save_checkpoint_path, config=ckptconfig) cb += [ckpoint_cb] if args_opt.run_eval: if args_opt.eval_dataset_path is None or (not os.path.isfile(args_opt.eval_dataset_path)): raise ValueError("{} is not a existing path.".format(args_opt.eval_dataset_path)) if args_opt.eval_image_path is None or (not os.path.isdir(args_opt.eval_image_path)): raise ValueError("{} is not a existing path.".format(args_opt.eval_image_path)) eval_dataset = create_ctpn_dataset(args_opt.eval_dataset_path, \ batch_size=config.batch_size, repeat_num=1, is_training=False) eval_net = net eval_param_dict = {"eval_network": eval_net, "eval_dataset": eval_dataset, \ "eval_image_path": args_opt.eval_image_path} eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval, eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True, ckpt_directory=save_checkpoint_path, besk_ckpt_name="best_acc.ckpt", metrics_name="hmean") cb += [eval_cb] model = Model(net_with_grads) model.train(training_cfg.total_epoch, dataset, callbacks=cb, dataset_sink_mode=True)