You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 2.8 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. # Deeplab-V3 Example
  2. ## Description
  3. This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore.
  4. ## Requirements
  5. - Install [MindSpore](https://www.mindspore.cn/install/en).
  6. - Download the VOC 2012 dataset for training.
  7. > Notes:
  8. If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
  9. ## Running the Example
  10. ### Training
  11. - Set options in config.py.
  12. - Run `run_standalone_train.sh` for non-distributed training.
  13. ``` bash
  14. sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
  15. ```
  16. - Run `run_distribute_train.sh` for distributed training.
  17. ``` bash
  18. sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH DATA_PATH
  19. ```
  20. ### Evaluation
  21. Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckpt' are set to your own path.
  22. - Run run_eval.sh for evaluation.
  23. ``` bash
  24. sh scripts/run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH
  25. ```
  26. ## Options and Parameters
  27. It contains of parameters of Deeplab-V3 model and options for training, which is set in file config.py.
  28. ### Options:
  29. ```
  30. config.py:
  31. learning_rate Learning rate, default is 0.0014.
  32. weight_decay Weight decay, default is 5e-5.
  33. momentum Momentum, default is 0.97.
  34. crop_size Image crop size [height, width] during training, default is 513.
  35. eval_scales The scales to resize images for evaluation, default is [0.5, 0.75, 1.0, 1.25, 1.5, 1.75].
  36. output_stride The ratio of input to output spatial resolution, default is 16.
  37. ignore_label Ignore label value, default is 255.
  38. seg_num_classes Number of semantic classes, including the background class (if exists).
  39. foreground classes + 1 background class in the PASCAL VOC 2012 dataset, default is 21.
  40. fine_tune_batch_norm Fine tune the batch norm parameters or not, default is False.
  41. atrous_rates Atrous rates for atrous spatial pyramid pooling, default is None.
  42. decoder_output_stride The ratio of input to output spatial resolution when employing decoder
  43. to refine segmentation results, default is None.
  44. image_pyramid Input scales for multi-scale feature extraction, default is None.
  45. epoch_size Epoch size, default is 6.
  46. batch_size batch size of input dataset: N, default is 2.
  47. enable_save_ckpt Enable save checkpoint, default is true.
  48. save_checkpoint_steps Save checkpoint steps, default is 1000.
  49. save_checkpoint_num Save checkpoint numbers, default is 1.
  50. ```
  51. ### Parameters:
  52. ```
  53. Parameters for dataset and network:
  54. distribute Run distribute, default is false.
  55. data_url Train/Evaluation data url, required.
  56. checkpoint_url Checkpoint path, default is None.
  57. ```