You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset_helper.py 4.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Dataset help for minddata dataset"""
  16. from mindspore._checkparam import check_bool
  17. from mindspore.parallel._utils import _get_device_num, _get_parallel_mode
  18. from mindspore.train.dataset_helper import _send_data
  19. from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \
  20. _to_full_shapes
  21. from mindspore.train.parallel_utils import ParallelMode
  22. class DatasetHelper:
  23. """
  24. Help function to use the Minddata dataset.
  25. According to different context, change the iter of dataset, to use the same for loop in different context.
  26. Note:
  27. The iter of DatasetHelper will give one epoch data.
  28. Args:
  29. dataset (DataSet): The dataset.
  30. dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host.
  31. Default: True.
  32. Examples:
  33. >>> dataset_helper = DatasetHelper(dataset)
  34. >>> for inputs in dataset_helper:
  35. >>> outputs = network(*inputs)
  36. """
  37. def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0):
  38. check_bool(dataset_sink_mode)
  39. self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order)
  40. def __iter__(self):
  41. return self.iter.__iter__()
  42. # A temp solution for loop sink. Delete later
  43. def types_shapes(self):
  44. """Get the types and shapes from dataset on current config."""
  45. return self.iter.types_shapes()
  46. def loop_size(self):
  47. """Get loop_size for every iteration."""
  48. return self.iter.loop_size
  49. class _DatasetIter:
  50. """Base iter for dataset help"""
  51. def __init__(self, dataset):
  52. self.loop_size = 1
  53. if not hasattr(dataset, '__ME_INITED__'):
  54. if not hasattr(dataset, '__loop_size__'):
  55. self.loop_size = dataset.get_dataset_size()
  56. else:
  57. self.loop_size = dataset.__loop_size__
  58. dataset.__TRANSFER_DATASET__ = _exec_datagraph(dataset, self.loop_size)
  59. dataset.__ME_INITED__ = dataset.__TRANSFER_DATASET__.queue_name
  60. if not hasattr(dataset, '__no_send__'):
  61. _send_data(dataset)
  62. else:
  63. _send_data(dataset)
  64. self.ind = 0
  65. self.dataset = dataset
  66. dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
  67. self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
  68. def __iter__(self):
  69. self.ind = 0
  70. return self
  71. def __next__(self):
  72. if self.ind >= self.loop_count:
  73. raise StopIteration()
  74. self.ind += 1
  75. return self.op()
  76. def types_shapes(self):
  77. return self.dataset_types, self.dataset_shapes
  78. def get_loop_count(self, dataset):
  79. loop_count = 1
  80. if hasattr(dataset, '__loop_size__'):
  81. loop_size = dataset.__loop_size__
  82. if dataset.get_dataset_size() % loop_size != 0:
  83. raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
  84. f'loop_size {loop_size} are not matched.')
  85. loop_count = int(dataset.get_dataset_size() / loop_size)
  86. return loop_count
  87. class _DatasetIterMSLoopSink(_DatasetIter):
  88. """Iter for context (device_target=Ascend)"""
  89. def __init__(self, dataset, iter_first_order):
  90. super(_DatasetIterMSLoopSink, self).__init__(dataset)
  91. loop_size = dataset.__loop_size__ + iter_first_order
  92. self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
  93. # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
  94. # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
  95. # times the batch dimension of tensors for run. Now only support LoopSink.
  96. if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
  97. device_num = _get_device_num()
  98. self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
  99. def op():
  100. return tuple()
  101. self.op = op