|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Dataset help for minddata dataset"""
- from mindspore._checkparam import check_bool
- from mindspore.parallel._utils import _get_device_num, _get_parallel_mode
- from mindspore.train.dataset_helper import _send_data
- from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \
- _to_full_shapes
- from mindspore.train.parallel_utils import ParallelMode
-
-
- class DatasetHelper:
- """
- Help function to use the Minddata dataset.
-
- According to different context, change the iter of dataset, to use the same for loop in different context.
-
- Note:
- The iter of DatasetHelper will give one epoch data.
-
- Args:
- dataset (DataSet): The dataset.
- dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host.
- Default: True.
-
- Examples:
- >>> dataset_helper = DatasetHelper(dataset)
- >>> for inputs in dataset_helper:
- >>> outputs = network(*inputs)
- """
-
- def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0):
- check_bool(dataset_sink_mode)
- self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order)
-
- def __iter__(self):
- return self.iter.__iter__()
-
- # A temp solution for loop sink. Delete later
- def types_shapes(self):
- """Get the types and shapes from dataset on current config."""
- return self.iter.types_shapes()
-
- def loop_size(self):
- """Get loop_size for every iteration."""
- return self.iter.loop_size
-
-
- class _DatasetIter:
- """Base iter for dataset help"""
-
- def __init__(self, dataset):
- self.loop_size = 1
- if not hasattr(dataset, '__ME_INITED__'):
- if not hasattr(dataset, '__loop_size__'):
- self.loop_size = dataset.get_dataset_size()
- else:
- self.loop_size = dataset.__loop_size__
- dataset.__TRANSFER_DATASET__ = _exec_datagraph(dataset, self.loop_size)
- dataset.__ME_INITED__ = dataset.__TRANSFER_DATASET__.queue_name
-
- if not hasattr(dataset, '__no_send__'):
- _send_data(dataset)
- else:
- _send_data(dataset)
-
- self.ind = 0
- self.dataset = dataset
- dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
- self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
-
- def __iter__(self):
- self.ind = 0
- return self
-
- def __next__(self):
- if self.ind >= self.loop_count:
- raise StopIteration()
- self.ind += 1
- return self.op()
-
- def types_shapes(self):
- return self.dataset_types, self.dataset_shapes
-
- def get_loop_count(self, dataset):
- loop_count = 1
- if hasattr(dataset, '__loop_size__'):
- loop_size = dataset.__loop_size__
- if dataset.get_dataset_size() % loop_size != 0:
- raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
- f'loop_size {loop_size} are not matched.')
- loop_count = int(dataset.get_dataset_size() / loop_size)
- return loop_count
-
-
- class _DatasetIterMSLoopSink(_DatasetIter):
- """Iter for context (device_target=Ascend)"""
-
- def __init__(self, dataset, iter_first_order):
- super(_DatasetIterMSLoopSink, self).__init__(dataset)
- loop_size = dataset.__loop_size__ + iter_first_order
- self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
- # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
- # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
- # times the batch dimension of tensors for run. Now only support LoopSink.
- if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
- device_num = _get_device_num()
- self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
-
- def op():
- return tuple()
-
- self.op = op
|