|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- # Contents
-
- - [YOLOv3_ResNet18 Description](#yolov3_resnet18-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Evaluation Performance](#evaluation-performance)
- - [Inference Performance](#evaluation-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [YOLOv3_ResNet18 Description](#contents)
-
- YOLOv3 network based on ResNet-18, with support for training and evaluation.
-
- [Paper](https://arxiv.org/abs/1804.02767): Joseph Redmon, Ali Farhadi. arXiv preprint arXiv:1804.02767, 2018. 2, 4, 7, 11.
-
- # [Model Architecture](#contents)
-
- The overall network architecture of YOLOv3 is show below:
-
- And we use ResNet18 as the backbone of YOLOv3_ResNet18. The architecture of ResNet18 has 4 stages. The ResNet architecture performs the initial convolution and max-pooling using 7×7 and 3×3 kernel sizes respectively. Afterward, every stage of the network has different Residual blocks (2, 2, 2, 2) containing two 3×3 conv layers. Finally, the network has an Average Pooling layer followed by a fully connected layer.
-
- # [Dataset](#contents)
-
- Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
-
- Dataset used: [COCO2017](<http://images.cocodataset.org/>)
-
- - Dataset size:19G
- - Train:18G,118000 images
- - Val:1G,5000 images
- - Annotations:241M,instances,captions,person_keypoints etc
- - Data format:image and json files
- - Note:Data will be processed in dataset.py
-
- - Dataset
-
- 1. The directory structure is as follows:
-
- ```
- .
- ├── annotations # annotation jsons
- ├── train2017 # train dataset
- └── val2017 # infer dataset
- ```
-
- 2. Organize the dataset information into a TXT file, each row in the file is as follows:
-
- ```
- train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
- ```
-
- Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. `dataset.py` is the parsing script, we read image from an image path joined by the `image_dir`(dataset directory) and the relative path in `anno_path`(the TXT file path), `image_dir` and `anno_path` are external inputs.
-
- # [Environment Requirements](#contents)
-
- - Hardware(Ascend)
- - Prepare hardware environment with Ascend processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Quick Start](#contents)
-
- After installing MindSpore via the official website, you can start training and evaluation on Ascend as follows:
-
- - running on Ascend
-
- ```shell script
- #run standalone training example
- sh run_standalone_train.sh [DEVICE_ID] [EPOCH_SIZE] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH]
-
- #run distributed training example
- sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH] [RANK_TABLE_FILE]
-
- #run evaluation example
- sh run_eval.sh [DEVICE_ID] [CKPT_PATH] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH]
- ```
-
- # [Script Description](#contents)
-
- ## [Script and Sample Code](#contents)
-
- ```python
- └── cv
- ├── README.md // descriptions about all the models
- ├── mindspore_hub_conf.md // config for mindspore hub
- └── yolov3_resnet18
- ├── README.md // descriptions about yolov3_resnet18
- ├── scripts
- ├── run_distribute_train.sh // shell script for distributed on Ascend
- ├── run_standalone_train.sh // shell script for distributed on Ascend
- └── run_eval.sh // shell script for evaluation on Ascend
- ├── src
- ├── dataset.py // creating dataset
- ├── yolov3.py // yolov3 architecture
- ├── config.py // parameter configuration
- └── utils.py // util function
- ├── train.py // training script
- └── eval.py // evaluation script
- ```
-
- ## [Script Parameters](#contents)
-
- Major parameters in train.py and config.py as follows:
-
- ```python
- device_num: Use device nums, default is 1.
- lr: Learning rate, default is 0.001.
- epoch_size: Epoch size, default is 50.
- batch_size: Batch size, default is 32.
- pre_trained: Pretrained Checkpoint file path.
- pre_trained_epoch_size: Pretrained epoch size.
- mindrecord_dir: Mindrecord directory.
- image_dir: Dataset path.
- anno_path: Annotation path.
-
- img_shape: Image height and width used as input to the model.
- ```
-
- ## [Training Process](#contents)
-
- ### Training on Ascend
-
- To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.**
-
- - Stand alone mode
-
- ```bash
- sh run_standalone_train.sh 0 50 ./Mindrecord_train ./dataset ./dataset/train.txt
- ```
-
- The input variables are device id, epoch size, mindrecord directory path, dataset directory path and train TXT file path.
-
- - Distributed mode
-
- ```bash
- sh run_distribute_train.sh 8 150 /data/Mindrecord_train /data /data/train.txt /data/hccl.json
- ```
-
- The input variables are device numbers, epoch size, mindrecord directory path, dataset directory path, train TXT file path and [hccl json configuration file](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). **It is better to use absolute path.**
-
- You will get the loss value and time of each step as following:
-
- ```bash
- epoch: 145 step: 156, loss is 12.202981
- epoch time: 25599.22742843628, per step time: 164.0976117207454
- epoch: 146 step: 156, loss is 16.91706
- epoch time: 23199.971675872803, per step time: 148.7177671530308
- epoch: 147 step: 156, loss is 13.04007
- epoch time: 23801.95164680481, per step time: 152.57661312054364
- epoch: 148 step: 156, loss is 10.431475
- epoch time: 23634.241580963135, per step time: 151.50154859591754
- epoch: 149 step: 156, loss is 14.665991
- epoch time: 24118.8325881958, per step time: 154.60790120638333
- epoch: 150 step: 156, loss is 10.779521
- epoch time: 25319.57221031189, per step time: 162.30495006610187
- ```
-
- Note the results is two-classification(person and face) used our own annotations with coco2017, you can change `num_classes` in `config.py` to train your dataset. And we will support 80 classifications in coco2017 the near future.
-
- ## [Evaluation Process](#contents)
-
- ### Evaluation on Ascend
-
- To eval, run `eval.py` with the dataset `image_dir`, `anno_path`(eval txt), `mindrecord_dir` and `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/training/en/master/use/save_model.html) file.
-
- ```bash
- sh run_eval.sh 0 yolo.ckpt ./Mindrecord_eval ./dataset ./dataset/eval.txt
- ```
-
- The input variables are device id, checkpoint path, mindrecord directory path, dataset directory path and train TXT file path.
-
- You will get the precision and recall value of each class:
-
- ```bash
- class 0 precision is 88.18%, recall is 66.00%
- class 1 precision is 85.34%, recall is 79.13%
- ```
-
- Note the precision and recall values are results of two-classification(person and face) used our own annotations with coco2017.
-
- # [Model Description](#contents)
-
- ## [Performance](#contents)
-
- ### Evaluation Performance
-
- | Parameters | Ascend |
- | -------------------------- | ----------------------------------------------------------- |
- | Model Version | YOLOv3_Resnet18 V1 |
- | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
- | uploaded Date | 09/15/2020 (month/day/year) |
- | MindSpore Version | 1.0.0 |
- | Dataset | COCO2017 |
- | Training Parameters | epoch = 150, batch_size = 32, lr = 0.001 |
- | Optimizer | Adam |
- | Loss Function | Sigmoid Cross Entropy |
- | outputs | probability |
- | Speed | 1pc: 120 ms/step; 8pcs: 160 ms/step |
- | Total time | 1pc: 150 mins; 8pcs: 70 mins |
- | Parameters (M) | 189 |
- | Scripts | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) |
-
- ### Inference Performance
-
- | Parameters | Ascend |
- | ------------------- | ----------------------------------------------- |
- | Model Version | YOLOv3_Resnet18 V1 |
- | Resource | Ascend 910 |
- | Uploaded Date | 09/15/2020 (month/day/year) |
- | MindSpore Version | 1.0.0 |
- | Dataset | COCO2017 |
- | batch_size | 1 |
- | outputs | presion and recall |
- | Accuracy | class 0: 88.18%/66.00%; class 1: 85.34%/79.13% |
-
- # [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
-
|