|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- # Contents
-
- - [Contents](#contents)
- - [Xception Description](#xception-description)
- - [Model architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Features](#features)
- - [Mixed Precision(Ascend)](#mixed-precisionascend)
- - [Environment Requirements](#environment-requirements)
- - [Script description](#script-description)
- - [Script and sample code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training process](#training-process)
- - [Usage](#usage)
- - [Launch](#launch)
- - [Result](#result)
- - [Eval process](#eval-process)
- - [Usage](#usage-1)
- - [Launch](#launch-1)
- - [Result](#result-1)
- - [Model description](#model-description)
- - [Performance](#performance)
- - [Training Performance](#training-performance)
- - [Inference Performance](#inference-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [Xception Description](#contents)
-
- Xception by Google is extreme version of Inception. With a modified depthwise separable convolution, it is even better than Inception-v3. This paper was published in 2017.
-
- [Paper](https://arxiv.org/pdf/1610.02357v3.pdf) Franois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) IEEE, 2017.
-
- # [Model architecture](#contents)
-
- The overall network architecture of Xception is show below:
-
- [Link](https://arxiv.org/pdf/1610.02357v3.pdf)
-
- # [Dataset](#contents)
-
- Dataset used can refer to paper.
-
- - Dataset size: 125G, 1250k colorful images in 1000 classes
- - Train: 120G, 1200k images
- - Test: 5G, 50k images
- - Data format: RGB images.
- - Note: Data will be processed in src/dataset.py
-
- # [Features](#contents)
-
- ## [Mixed Precision(Ascend)](#contents)
-
- The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
-
- For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
-
- # [Environment Requirements](#contents)
-
- - Hardware(Ascend)
- - Prepare hardware environment with Ascend.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Script description](#contents)
-
- ## [Script and sample code](#contents)
-
- ```shell
- .
- └─Xception
- ├─README.md
- ├─scripts
- ├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
- ├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
- └─run_eval.sh # launch evaluating with ascend platform
- ├─src
- ├─config.py # parameter configuration
- ├─dataset.py # data preprocessing
- ├─Xception.py # network definition
- ├─loss.py # Customized CrossEntropy loss function
- └─lr_generator.py # learning rate generator
- ├─train.py # train net
- ├─export.py # export net
- └─eval.py # eval net
-
- ```
-
- ## [Script Parameters](#contents)
-
- ```python
- Major parameters in train.py and config.py are:
- 'num_classes': 1000 # dataset class numbers
- 'batch_size': 128 # input batchsize
- 'loss_scale': 1024 # loss scale
- 'momentum': 0.9 # momentum
- 'weight_decay': 1e-4 # weight decay
- 'epoch_size': 250 # total epoch numbers
- 'save_checkpoint': True # save checkpoint
- 'save_checkpoint_epochs': 1 # save checkpoint epochs
- 'keep_checkpoint_max': 5 # max numbers to keep checkpoints
- 'save_checkpoint_path': "./" # save checkpoint path
- 'warmup_epochs': 1 # warmup epoch numbers
- 'lr_decay_mode': "liner" # lr decay mode
- 'use_label_smooth': True # use label smooth
- 'finish_epoch': 0 # finished epochs numbers
- 'label_smooth_factor': 0.1 # label smoothing factor
- 'lr_init': 0.00004 # initiate learning rate
- 'lr_max': 0.4 # max bound of learning rate
- 'lr_end': 0.00004 # min bound of learning rate
- ```
-
- ## [Training process](#contents)
-
- ### Usage
-
- You can start training using python or shell scripts. The usage of shell scripts as follows:
-
- - Ascend:
-
- ```shell
- # distribute training example(8p)
- sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
- # standalone training
- sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
- ```
-
- > Notes: RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html), and the device_ip can be got as [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
-
- ### Launch
-
- ``` shell
- # training example
- python:
- Ascend:
- python train.py --device_target Ascend --dataset_path /dataset/train
-
- shell:
- Ascend:
- # distribute training example(8p)
- sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
- # standalone training
- sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
- ```
-
- ### Result
-
- Training result will be stored in the example path. Checkpoints will be stored at `. /ckpt_0` by default, and training log will be redirected to `log.txt` like following.
-
- ``` shell
- epoch: 1 step: 1251, loss is 4.8427444
- epoch time: 701242.350 ms, per step time: 560.545 ms
- epoch: 2 step: 1251, loss is 4.0637593
- epoch time: 598591.422 ms, per step time: 478.490 ms
- ```
-
- ## [Eval process](#contents)
-
- ### Usage
-
- You can start training using python or shell scripts. The usage of shell scripts as follows:
-
- ```shell
- sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
- ```
-
- ### Launch
-
- ```shell
- # eval example
- python:
- Ascend: python eval.py --device_target Ascend --checkpoint_path PATH_CHECKPOINT --dataset_path DATA_DIR
-
- shell:
- Ascend: sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
- ```
-
- > checkpoint can be produced in training process.
-
- ### Result
-
- Evaluation result will be stored in the example path, you can find result like the following in `eval.log`.
-
- ```shell
- result: {'Loss': 1.7797744848789312, 'Top_1_Acc': 0.7985777243589743, 'Top_5_Acc': 0.9485777243589744}
- ```
-
- # [Model description](#contents)
-
- ## [Performance](#contents)
-
- ### Training Performance
-
- | Parameters | Ascend |
- | -------------------------- | ---------------------------------------------- |
- | Model Version | Xception |
- | Resource | HUAWEI CLOUD Modelarts |
- | uploaded Date | 12/10/2020 |
- | MindSpore Version | 1.1.0 |
- | Dataset | 1200k images |
- | Batch_size | 128 |
- | Training Parameters | src/config.py |
- | Optimizer | Momentum |
- | Loss Function | CrossEntropySmooth |
- | Loss | 1.78 |
- | Accuracy (8p) | Top1[79.8%] Top5[94.8%] |
- | Per step time (8p) | 479 ms/step |
- | Total time (8p) | 42h |
- | Params (M) | 180M |
- | Scripts | [Xception script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/xception) |
-
- #### Inference Performance
-
- | Parameters | Ascend |
- | ------------------- | --------------------------- |
- | Model Version | Xception |
- | Resource | HUAWEI CLOUD Modelarts |
- | Uploaded Date | 12/10/2020 |
- | MindSpore Version | 1.1.0 |
- | Dataset | 50k images |
- | Batch_size | 128 |
- | Accuracy | Top1[79.8%] Top5[94.8%] |
- | Total time | 3mins |
-
- # [Description of Random Situation](#contents)
-
- In `dataset.py`, we set the seed inside `create_dataset` function. We also use random seed in `train.py`.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|