|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Evaluation for CTPN"""
- import os
- import argparse
- import time
- import numpy as np
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import set_seed
- from src.ctpn import CTPN
- from src.config import config
- from src.dataset import create_ctpn_dataset
- from src.text_connector.detector import detect
- set_seed(1)
-
- parser = argparse.ArgumentParser(description="CTPN evaluation")
- parser.add_argument("--dataset_path", type=str, default="", help="Dataset path.")
- parser.add_argument("--image_path", type=str, default="", help="Image path.")
- parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- args_opt = parser.parse_args()
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
-
- def ctpn_infer_test(dataset_path='', ckpt_path='', img_dir=''):
- """ctpn infer."""
- print("ckpt path is {}".format(ckpt_path))
- ds = create_ctpn_dataset(dataset_path, batch_size=config.test_batch_size, repeat_num=1, is_training=False)
- config.batch_size = config.test_batch_size
- total = ds.get_dataset_size()
- print("*************total dataset size is {}".format(total))
- net = CTPN(config, is_training=False)
- param_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- eval_iter = 0
-
- print("\n========================================\n")
- print("Processing, please wait a moment.")
- img_basenames = []
- output_dir = os.path.join(os.getcwd(), "submit")
- if not os.path.exists(output_dir):
- os.mkdir(output_dir)
- for file in os.listdir(img_dir):
- img_basenames.append(os.path.basename(file))
- for data in ds.create_dict_iterator():
- img_data = data['image']
- img_metas = data['image_shape']
- gt_bboxes = data['box']
- gt_labels = data['label']
- gt_num = data['valid_num']
-
- start = time.time()
- # run net
- output = net(img_data, gt_bboxes, gt_labels, gt_num)
- gt_bboxes = gt_bboxes.asnumpy()
- gt_labels = gt_labels.asnumpy()
- gt_num = gt_num.asnumpy().astype(bool)
- end = time.time()
- proposal = output[0]
- proposal_mask = output[1]
- print("start to draw pic")
- for j in range(config.test_batch_size):
- img = img_basenames[config.test_batch_size * eval_iter + j]
- all_box_tmp = proposal[j].asnumpy()
- all_mask_tmp = np.expand_dims(proposal_mask[j].asnumpy(), axis=1)
- using_boxes_mask = all_box_tmp * all_mask_tmp
- textsegs = using_boxes_mask[:, 0:4].astype(np.float32)
- scores = using_boxes_mask[:, 4].astype(np.float32)
- shape = img_metas.asnumpy()[0][:2].astype(np.int32)
- bboxes = detect(textsegs, scores[:, np.newaxis], shape)
- from PIL import Image, ImageDraw
- im = Image.open(img_dir + '/' + img)
- draw = ImageDraw.Draw(im)
- image_h = img_metas.asnumpy()[j][2]
- image_w = img_metas.asnumpy()[j][3]
- gt_boxs = gt_bboxes[j][gt_num[j], :]
- for gt_box in gt_boxs:
- gt_x1 = gt_box[0] / image_w
- gt_y1 = gt_box[1] / image_h
- gt_x2 = gt_box[2] / image_w
- gt_y2 = gt_box[3] / image_h
- draw.line([(gt_x1, gt_y1), (gt_x1, gt_y2), (gt_x2, gt_y2), (gt_x2, gt_y1), (gt_x1, gt_y1)],\
- fill='green', width=2)
- file_name = "res_" + img.replace("jpg", "txt")
- output_file = os.path.join(output_dir, file_name)
- f = open(output_file, 'w')
- for bbox in bboxes:
- x1 = bbox[0] / image_w
- y1 = bbox[1] / image_h
- x2 = bbox[2] / image_w
- y2 = bbox[3] / image_h
- draw.line([(x1, y1), (x1, y2), (x2, y2), (x2, y1), (x1, y1)], fill='red', width=2)
- str_tmp = str(int(x1)) + "," + str(int(y1)) + "," + str(int(x2)) + "," + str(int(y2))
- f.write(str_tmp)
- f.write("\n")
- f.close()
- im.save(img)
- percent = round(eval_iter / total * 100, 2)
- eval_iter = eval_iter + 1
- print("Iter {} cost time {}".format(eval_iter, end - start))
- print(' %s [%d/%d]' % (str(percent) + '%', eval_iter, total), end='\r')
-
- if __name__ == '__main__':
- ctpn_infer_test(args_opt.dataset_path, args_opt.checkpoint_path, img_dir=args_opt.image_path)
|