# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation for CTPN""" import os import argparse import time import numpy as np from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common import set_seed from src.ctpn import CTPN from src.config import config from src.dataset import create_ctpn_dataset from src.text_connector.detector import detect set_seed(1) parser = argparse.ArgumentParser(description="CTPN evaluation") parser.add_argument("--dataset_path", type=str, default="", help="Dataset path.") parser.add_argument("--image_path", type=str, default="", help="Image path.") parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) def ctpn_infer_test(dataset_path='', ckpt_path='', img_dir=''): """ctpn infer.""" print("ckpt path is {}".format(ckpt_path)) ds = create_ctpn_dataset(dataset_path, batch_size=config.test_batch_size, repeat_num=1, is_training=False) config.batch_size = config.test_batch_size total = ds.get_dataset_size() print("*************total dataset size is {}".format(total)) net = CTPN(config, is_training=False) param_dict = load_checkpoint(ckpt_path) load_param_into_net(net, param_dict) net.set_train(False) eval_iter = 0 print("\n========================================\n") print("Processing, please wait a moment.") img_basenames = [] output_dir = os.path.join(os.getcwd(), "submit") if not os.path.exists(output_dir): os.mkdir(output_dir) for file in os.listdir(img_dir): img_basenames.append(os.path.basename(file)) for data in ds.create_dict_iterator(): img_data = data['image'] img_metas = data['image_shape'] gt_bboxes = data['box'] gt_labels = data['label'] gt_num = data['valid_num'] start = time.time() # run net output = net(img_data, gt_bboxes, gt_labels, gt_num) gt_bboxes = gt_bboxes.asnumpy() gt_labels = gt_labels.asnumpy() gt_num = gt_num.asnumpy().astype(bool) end = time.time() proposal = output[0] proposal_mask = output[1] print("start to draw pic") for j in range(config.test_batch_size): img = img_basenames[config.test_batch_size * eval_iter + j] all_box_tmp = proposal[j].asnumpy() all_mask_tmp = np.expand_dims(proposal_mask[j].asnumpy(), axis=1) using_boxes_mask = all_box_tmp * all_mask_tmp textsegs = using_boxes_mask[:, 0:4].astype(np.float32) scores = using_boxes_mask[:, 4].astype(np.float32) shape = img_metas.asnumpy()[0][:2].astype(np.int32) bboxes = detect(textsegs, scores[:, np.newaxis], shape) from PIL import Image, ImageDraw im = Image.open(img_dir + '/' + img) draw = ImageDraw.Draw(im) image_h = img_metas.asnumpy()[j][2] image_w = img_metas.asnumpy()[j][3] gt_boxs = gt_bboxes[j][gt_num[j], :] for gt_box in gt_boxs: gt_x1 = gt_box[0] / image_w gt_y1 = gt_box[1] / image_h gt_x2 = gt_box[2] / image_w gt_y2 = gt_box[3] / image_h draw.line([(gt_x1, gt_y1), (gt_x1, gt_y2), (gt_x2, gt_y2), (gt_x2, gt_y1), (gt_x1, gt_y1)],\ fill='green', width=2) file_name = "res_" + img.replace("jpg", "txt") output_file = os.path.join(output_dir, file_name) f = open(output_file, 'w') for bbox in bboxes: x1 = bbox[0] / image_w y1 = bbox[1] / image_h x2 = bbox[2] / image_w y2 = bbox[3] / image_h draw.line([(x1, y1), (x1, y2), (x2, y2), (x2, y1), (x1, y1)], fill='red', width=2) str_tmp = str(int(x1)) + "," + str(int(y1)) + "," + str(int(x2)) + "," + str(int(y2)) f.write(str_tmp) f.write("\n") f.close() im.save(img) percent = round(eval_iter / total * 100, 2) eval_iter = eval_iter + 1 print("Iter {} cost time {}".format(eval_iter, end - start)) print(' %s [%d/%d]' % (str(percent) + '%', eval_iter, total), end='\r') if __name__ == '__main__': ctpn_infer_test(args_opt.dataset_path, args_opt.checkpoint_path, img_dir=args_opt.image_path)