|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into air, mindir and onnx models"""
- import argparse
- import numpy as np
-
- from mindspore import Tensor, context, load_checkpoint, export
-
- from src.gat import GAT
- from src.config import GatConfig
-
- parser = argparse.ArgumentParser(description="GAT export")
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
- parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.")
- parser.add_argument("--file_name", type=str, default="gat", help="output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- parser.add_argument("--device_target", type=str, default="Ascend",
- choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
-
- if __name__ == "__main__":
-
-
- if args.dataset == "citeseer":
- feature_size = [1, 3312, 3703]
- biases_size = [1, 3312, 3312]
- num_classes = 6
- else:
- feature_size = [1, 2708, 1433]
- biases_size = [1, 2708, 2708]
- num_classes = 7
-
- hid_units = GatConfig.hid_units
- n_heads = GatConfig.n_heads
-
- feature = np.random.uniform(0.0, 1.0, size=feature_size).astype(np.float32)
- biases = np.random.uniform(0.0, 1.0, size=biases_size).astype(np.float64)
-
- feature_size = feature.shape[2]
- num_nodes = feature.shape[1]
-
- gat_net = GAT(feature_size,
- num_classes,
- num_nodes,
- hid_units,
- n_heads,
- attn_drop=0.0,
- ftr_drop=0.0)
-
- gat_net.set_train(False)
- load_checkpoint(args.ckpt_file, net=gat_net)
- gat_net.add_flags_recursive(fp16=True)
-
- export(gat_net, Tensor(feature), Tensor(biases), file_name=args.file_name, file_format=args.file_format)
|