| @@ -210,9 +210,9 @@ class FakeQuantWithMinMaxVars(PrimitiveWithInfer): | |||
| raise ValueError(f"For '{self.name}', the shape of \'min\' cannot broadcast to the shape of \'x\'.") | |||
| def infer_shape(self, x_shape, min_shape, max_shape): | |||
| validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name) | |||
| validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name) | |||
| validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name) | |||
| validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name) | |||
| validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name) | |||
| self.check_broadcast(min_shape, x_shape) | |||
| return x_shape | |||
| @@ -273,10 +273,10 @@ class FakeQuantWithMinMaxVarsGradient(PrimitiveWithInfer): | |||
| raise ValueError(f"For '{self.name}', the shape of \'min\' cannot broadcast to the shape of \'x\'.") | |||
| def infer_shape(self, dout_shape, x_shape, min_shape, max_shape): | |||
| validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name) | |||
| validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name) | |||
| validator.check("dout shape", dout_shape, "x shape", x_shape, Rel.EQ, self.name) | |||
| validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name) | |||
| validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name) | |||
| validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name) | |||
| self.check_broadcast(min_shape, x_shape) | |||
| return x_shape, min_shape, max_shape | |||
| @@ -325,9 +325,9 @@ class FakeQuantWithMinMaxVarsPerChannel(PrimitiveWithInfer): | |||
| 'narrow_range', narrow_range, (bool,), self.name) | |||
| def infer_shape(self, x_shape, min_shape, max_shape): | |||
| validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name) | |||
| validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name) | |||
| validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name) | |||
| validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name) | |||
| validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name) | |||
| validator.check("min shape", min_shape[0], "x shape", x_shape[-1], Rel.EQ, self.name) | |||
| return x_shape | |||
| @@ -382,10 +382,10 @@ class FakeQuantWithMinMaxVarsPerChannelGradient(PrimitiveWithInfer): | |||
| 'narrow_range', narrow_range, (bool,), self.name) | |||
| def infer_shape(self, dout_shape, x_shape, min_shape, max_shape): | |||
| validator.check_integer("x rank", len(x_shape), 1, Rel.GE, self.name) | |||
| validator.check_int(len(x_shape), 1, Rel.GE, "x rank", self.name) | |||
| validator.check("dout shape", dout_shape, "x shape", x_shape, Rel.EQ, self.name) | |||
| validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name) | |||
| validator.check_integer("min shape", len(min_shape), 1, Rel.EQ, self.name) | |||
| validator.check_int(len(min_shape), 1, Rel.EQ, "min shape", self.name) | |||
| validator.check("min shape", min_shape[0], "x shape", x_shape[-1], Rel.EQ, self.name) | |||
| return x_shape, min_shape, max_shape | |||
| @@ -0,0 +1,64 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """export checkpoint file into air models""" | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import Tensor, context | |||
| from mindspore.train.serialization import load_checkpoint, export | |||
| from src.gat import GAT | |||
| from src.config import GatConfig | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| if __name__ == '__main__': | |||
| parser = argparse.ArgumentParser(description='GAT_export') | |||
| parser.add_argument('--ckpt_file', type=str, default='./ckpts/gat.ckpt', help='GAT ckpt file.') | |||
| parser.add_argument('--output_file', type=str, default='gat.air', help='GAT output air name.') | |||
| parser.add_argument('--dataset', type=str, default='cora', help='GAT dataset name.') | |||
| args_opt = parser.parse_args() | |||
| if args_opt.dataset == "citeseer": | |||
| feature_size = [1, 3312, 3703] | |||
| biases_size = [1, 3312, 3312] | |||
| num_classes = 6 | |||
| else: | |||
| feature_size = [1, 2708, 1433] | |||
| biases_size = [1, 2708, 2708] | |||
| num_classes = 7 | |||
| hid_units = GatConfig.hid_units | |||
| n_heads = GatConfig.n_heads | |||
| feature = np.random.uniform(0.0, 1.0, size=feature_size).astype(np.float32) | |||
| biases = np.random.uniform(0.0, 1.0, size=biases_size).astype(np.float64) | |||
| feature_size = feature.shape[2] | |||
| num_nodes = feature.shape[1] | |||
| gat_net = GAT(feature_size, | |||
| num_classes, | |||
| num_nodes, | |||
| hid_units, | |||
| n_heads, | |||
| attn_drop=0.0, | |||
| ftr_drop=0.0) | |||
| gat_net.set_train(False) | |||
| load_checkpoint(args_opt.ckpt_file, net=gat_net) | |||
| gat_net.add_flags_recursive(fp16=True) | |||
| export(gat_net, Tensor(feature), Tensor(biases), file_name=args_opt.output_file, file_format="AIR") | |||
| @@ -0,0 +1,53 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """export checkpoint file into air models""" | |||
| import argparse | |||
| import numpy as np | |||
| from mindspore import Tensor, context | |||
| from mindspore.train.serialization import load_checkpoint, export | |||
| from src.gcn import GCN | |||
| from src.config import ConfigGCN | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| if __name__ == '__main__': | |||
| parser = argparse.ArgumentParser(description='GCN_export') | |||
| parser.add_argument('--ckpt_file', type=str, default='', help='GCN ckpt file.') | |||
| parser.add_argument('--output_file', type=str, default='gcn.air', help='GCN output air name.') | |||
| parser.add_argument('--dataset', type=str, default='cora', help='GCN dataset name.') | |||
| args_opt = parser.parse_args() | |||
| config = ConfigGCN() | |||
| if args_opt.dataset == "cora": | |||
| input_dim = 1433 | |||
| class_num = 7 | |||
| adj = Tensor(np.zeros((2708, 2708), np.float64)) | |||
| feature = Tensor(np.zeros((2708, 1433), np.float32)) | |||
| else: | |||
| input_dim = 3703 | |||
| class_num = 6 | |||
| adj = Tensor(np.zeros((3312, 3312), np.float64)) | |||
| feature = Tensor(np.zeros((3312, 3703), np.float32)) | |||
| gcn_net = GCN(config, input_dim, class_num) | |||
| gcn_net.set_train(False) | |||
| load_checkpoint(args_opt.ckpt_file, net=gcn_net) | |||
| gcn_net.add_flags_recursive(fp16=True) | |||
| export(gcn_net, adj, feature, file_name=args_opt.output_file, file_format="AIR") | |||