You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 3.0 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. create train or eval dataset.
  17. """
  18. import os
  19. import mindspore.common.dtype as mstype
  20. import mindspore.dataset.engine as de
  21. import mindspore.dataset.transforms.vision.c_transforms as C
  22. import mindspore.dataset.transforms.c_transforms as C2
  23. from config import config
  24. def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
  25. """
  26. create a train or eval dataset
  27. Args:
  28. dataset_path(string): the path of dataset.
  29. do_train(bool): whether dataset is used for train or eval.
  30. repeat_num(int): the repeat times of dataset. Default: 1
  31. batch_size(int): the batch size of dataset. Default: 32
  32. Returns:
  33. dataset
  34. """
  35. rank_size = int(os.getenv("RANK_SIZE"))
  36. rank_id = int(os.getenv("RANK_ID"))
  37. if rank_size == 1:
  38. ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
  39. else:
  40. ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
  41. num_shards=rank_size, shard_id=rank_id)
  42. resize_height = config.image_height
  43. resize_width = config.image_width
  44. buffer_size = 1000
  45. # define map operations
  46. decode_op = C.Decode()
  47. resize_crop_op = C.RandomCropDecodeResize(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333))
  48. horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5)
  49. resize_op = C.Resize((256, 256))
  50. center_crop = C.CenterCrop(resize_width)
  51. rescale_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
  52. normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
  53. change_swap_op = C.HWC2CHW()
  54. if do_train:
  55. trans = [resize_crop_op, horizontal_flip_op, rescale_op, normalize_op, change_swap_op]
  56. else:
  57. trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op]
  58. type_cast_op = C2.TypeCast(mstype.int32)
  59. ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8)
  60. ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
  61. # apply shuffle operations
  62. ds = ds.shuffle(buffer_size=buffer_size)
  63. # apply batch operations
  64. ds = ds.batch(batch_size, drop_remainder=True)
  65. # apply dataset repeat operation
  66. ds = ds.repeat(repeat_num)
  67. return ds