|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- Bert evaluation script.
- """
-
- import os
- import argparse
- import math
- import numpy as np
- import mindspore.common.dtype as mstype
- from mindspore import context
- from mindspore import log as logger
- from mindspore.common.tensor import Tensor
- import mindspore.dataset as de
- import mindspore.dataset.transforms.c_transforms as C
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.evaluation_config import cfg, bert_net_cfg
- from src.utils import BertNER, BertCLS, BertReg
- from src.CRF import postprocess
- from src.cluener_evaluation import submit
- from src.finetune_config import tag_to_index
-
-
- class Accuracy():
- """
- calculate accuracy
- """
- def __init__(self):
- self.acc_num = 0
- self.total_num = 0
-
- def update(self, logits, labels):
- """
- Update accuracy
- """
- labels = labels.asnumpy()
- labels = np.reshape(labels, -1)
- logits = logits.asnumpy()
- logit_id = np.argmax(logits, axis=-1)
- self.acc_num += np.sum(labels == logit_id)
- self.total_num += len(labels)
- print("=========================accuracy is ", self.acc_num / self.total_num)
-
-
- class F1():
- """
- calculate F1 score
- """
- def __init__(self):
- self.TP = 0
- self.FP = 0
- self.FN = 0
-
- def update(self, logits, labels):
- """
- update F1 score
- """
- labels = labels.asnumpy()
- labels = np.reshape(labels, -1)
- if cfg.use_crf:
- backpointers, best_tag_id = logits
- best_path = postprocess(backpointers, best_tag_id)
- logit_id = []
- for ele in best_path:
- logit_id.extend(ele)
- else:
- logits = logits.asnumpy()
- logit_id = np.argmax(logits, axis=-1)
- logit_id = np.reshape(logit_id, -1)
- pos_eva = np.isin(logit_id, [i for i in range(1, cfg.num_labels)])
- pos_label = np.isin(labels, [i for i in range(1, cfg.num_labels)])
- self.TP += np.sum(pos_eva&pos_label)
- self.FP += np.sum(pos_eva&(~pos_label))
- self.FN += np.sum((~pos_eva)&pos_label)
-
-
- class MCC():
- """
- Calculate Matthews Correlation Coefficient.
- """
- def __init__(self):
- self.TP = 0
- self.FP = 0
- self.FN = 0
- self.TN = 0
-
- def update(self, logits, labels):
- """
- Update MCC score
- """
- labels = labels.asnumpy()
- labels = np.reshape(labels, -1)
- labels = labels.astype(np.bool)
- logits = logits.asnumpy()
- logit_id = np.argmax(logits, axis=-1)
- logit_id = np.reshape(logit_id, -1)
- logit_id = logit_id.astype(np.bool)
- ornot = logit_id ^ labels
-
- self.TP += (~ornot & labels).sum()
- self.FP += (ornot & ~labels).sum()
- self.FN += (ornot & labels).sum()
- self.TN += (~ornot & ~labels).sum()
-
-
- class Spearman_Correlation():
- """
- calculate Spearman Correlation coefficient
- """
- def __init__(self):
- self.label = []
- self.logit = []
-
- def update(self, logits, labels):
- """
- Update Spearman Correlation
- """
- labels = labels.asnumpy()
- labels = np.reshape(labels, -1)
- logits = logits.asnumpy()
- logits = np.reshape(logits, -1)
- self.label.append(labels)
- self.logit.append(logits)
-
- def cal(self):
- """
- Calculate Spearman Correlation
- """
- label = np.concatenate(self.label)
- logit = np.concatenate(self.logit)
- sort_label = label.argsort()[::-1]
- sort_logit = logit.argsort()[::-1]
- n = len(label)
- d_acc = 0
- for i in range(n):
- d = np.where(sort_label == i)[0] - np.where(sort_logit == i)[0]
- d_acc += d**2
- ps = 1 - 6*d_acc/n/(n**2-1)
- return ps
-
-
- def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
- """
- get dataset
- """
- _ = distribute_file
-
- ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask",
- "segment_ids", "label_ids"])
- type_cast_op = C.TypeCast(mstype.int32)
- ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
- ds = ds.map(input_columns="input_mask", operations=type_cast_op)
- ds = ds.map(input_columns="input_ids", operations=type_cast_op)
- if cfg.task == "Regression":
- type_cast_op_float = C.TypeCast(mstype.float32)
- ds = ds.map(input_columns="label_ids", operations=type_cast_op_float)
- else:
- ds = ds.map(input_columns="label_ids", operations=type_cast_op)
- ds = ds.repeat(repeat_count)
-
- # apply shuffle operation
- buffer_size = 960
- ds = ds.shuffle(buffer_size=buffer_size)
-
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=True)
- return ds
-
-
- def bert_predict(Evaluation):
- """
- prediction function
- """
- target = args_opt.device_target
- if target == "Ascend":
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
- elif target == "GPU":
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- if bert_net_cfg.compute_type != mstype.float32:
- logger.warning('GPU only support fp32 temporarily, run with fp32.')
- bert_net_cfg.compute_type = mstype.float32
- else:
- raise Exception("Target error, GPU or Ascend is supported.")
- dataset = get_dataset(bert_net_cfg.batch_size, 1)
- if cfg.use_crf:
- net_for_pretraining = Evaluation(bert_net_cfg, False, num_labels=len(tag_to_index), use_crf=True,
- tag_to_index=tag_to_index, dropout_prob=0.0)
- else:
- net_for_pretraining = Evaluation(bert_net_cfg, False, num_labels)
- net_for_pretraining.set_train(False)
- param_dict = load_checkpoint(cfg.finetune_ckpt)
- load_param_into_net(net_for_pretraining, param_dict)
- model = Model(net_for_pretraining)
- return model, dataset
-
- def test_eval():
- """
- evaluation function
- """
- if cfg.task == "SeqLabeling":
- task_type = BertNER
- elif cfg.task == "Regression":
- task_type = BertReg
- elif cfg.task == "Classification":
- task_type = BertCLS
- elif cfg.task == "COLA":
- task_type = BertCLS
- else:
- raise ValueError("Task not supported.")
- model, dataset = bert_predict(task_type)
-
- if cfg.clue_benchmark:
- submit(model, cfg.data_file, bert_net_cfg.seq_length)
- else:
- if cfg.task == "SeqLabeling":
- callback = F1()
- elif cfg.task == "COLA":
- callback = MCC()
- elif cfg.task == "Regression":
- callback = Spearman_Correlation()
- else:
- callback = Accuracy()
-
- columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
- for data in dataset.create_dict_iterator():
- input_data = []
- for i in columns_list:
- input_data.append(Tensor(data[i]))
- input_ids, input_mask, token_type_id, label_ids = input_data
- logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
- callback.update(logits, label_ids)
- print("==============================================================")
- if cfg.task == "SeqLabeling":
- print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
- print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
- print("F1 {:.6f} ".format(2*callback.TP / (2*callback.TP + callback.FP + callback.FN)))
- elif cfg.task == "COLA":
- TP = callback.TP
- TN = callback.TN
- FP = callback.FP
- FN = callback.FN
- mcc = (TP*TN-FP*FN)/math.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
- print("MCC: {:.6f}".format(mcc))
- elif cfg.task == "Regression":
- print("Spearman Correlation is {:.6f}".format(callback.cal()[0]))
- else:
- print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
- callback.acc_num / callback.total_num))
- print("==============================================================")
-
- parser = argparse.ArgumentParser(description='Bert eval')
- parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
- args_opt = parser.parse_args()
- if __name__ == "__main__":
- num_labels = cfg.num_labels
- test_eval()
|