| @@ -89,7 +89,7 @@ config.py: | |||
| optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb" | |||
| finetune_config.py: | |||
| task task type: NER | SQUAD | OTHERS | |||
| task task type: SeqLabeling | Regression | Classification | COLA | SQUAD | |||
| num_labels number of labels to do classification | |||
| data_file dataset file to load: PATH, default is "/your/path/train.tfrecord" | |||
| schema_file dataset schema file to load: PATH, default is "/your/path/schema.json" | |||
| @@ -101,7 +101,7 @@ finetune_config.py: | |||
| optimizer optimizer used in fine-tune network: AdamWeigtDecayDynamicLR | Lamb | Momentum, default is "Lamb" | |||
| evaluation_config.py: | |||
| task task type: NER | SQUAD | OTHERS | |||
| task task type: SeqLabeling | Regression | Classification | COLA | |||
| num_labels number of labels to do classsification | |||
| data_file dataset file to load: PATH, default is "/your/path/evaluation.tfrecord" | |||
| schema_file dataset schema file to load: PATH, default is "/your/path/schema.json" | |||
| @@ -19,6 +19,7 @@ Bert evaluation script. | |||
| import os | |||
| import argparse | |||
| import math | |||
| import numpy as np | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import context | |||
| @@ -29,19 +30,24 @@ import mindspore.dataset.transforms.c_transforms as C | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from src.evaluation_config import cfg, bert_net_cfg | |||
| from src.utils import BertNER, BertCLS | |||
| from src.utils import BertNER, BertCLS, BertReg | |||
| from src.CRF import postprocess | |||
| from src.cluener_evaluation import submit | |||
| from src.finetune_config import tag_to_index | |||
| class Accuracy(): | |||
| ''' | |||
| """ | |||
| calculate accuracy | |||
| ''' | |||
| """ | |||
| def __init__(self): | |||
| self.acc_num = 0 | |||
| self.total_num = 0 | |||
| def update(self, logits, labels): | |||
| """ | |||
| Update accuracy | |||
| """ | |||
| labels = labels.asnumpy() | |||
| labels = np.reshape(labels, -1) | |||
| logits = logits.asnumpy() | |||
| @@ -50,18 +56,20 @@ class Accuracy(): | |||
| self.total_num += len(labels) | |||
| print("=========================accuracy is ", self.acc_num / self.total_num) | |||
| class F1(): | |||
| ''' | |||
| """ | |||
| calculate F1 score | |||
| ''' | |||
| """ | |||
| def __init__(self): | |||
| self.TP = 0 | |||
| self.FP = 0 | |||
| self.FN = 0 | |||
| def update(self, logits, labels): | |||
| ''' | |||
| """ | |||
| update F1 score | |||
| ''' | |||
| """ | |||
| labels = labels.asnumpy() | |||
| labels = np.reshape(labels, -1) | |||
| if cfg.use_crf: | |||
| @@ -80,10 +88,76 @@ class F1(): | |||
| self.FP += np.sum(pos_eva&(~pos_label)) | |||
| self.FN += np.sum((~pos_eva)&pos_label) | |||
| class MCC(): | |||
| """ | |||
| Calculate Matthews Correlation Coefficient. | |||
| """ | |||
| def __init__(self): | |||
| self.TP = 0 | |||
| self.FP = 0 | |||
| self.FN = 0 | |||
| self.TN = 0 | |||
| def update(self, logits, labels): | |||
| """ | |||
| Update MCC score | |||
| """ | |||
| labels = labels.asnumpy() | |||
| labels = np.reshape(labels, -1) | |||
| labels = labels.astype(np.bool) | |||
| logits = logits.asnumpy() | |||
| logit_id = np.argmax(logits, axis=-1) | |||
| logit_id = np.reshape(logit_id, -1) | |||
| logit_id = logit_id.astype(np.bool) | |||
| ornot = logit_id ^ labels | |||
| self.TP += (~ornot & labels).sum() | |||
| self.FP += (ornot & ~labels).sum() | |||
| self.FN += (ornot & labels).sum() | |||
| self.TN += (~ornot & ~labels).sum() | |||
| class Spearman_Correlation(): | |||
| """ | |||
| calculate Spearman Correlation coefficient | |||
| """ | |||
| def __init__(self): | |||
| self.label = [] | |||
| self.logit = [] | |||
| def update(self, logits, labels): | |||
| """ | |||
| Update Spearman Correlation | |||
| """ | |||
| labels = labels.asnumpy() | |||
| labels = np.reshape(labels, -1) | |||
| logits = logits.asnumpy() | |||
| logits = np.reshape(logits, -1) | |||
| self.label.append(labels) | |||
| self.logit.append(logits) | |||
| def cal(self): | |||
| """ | |||
| Calculate Spearman Correlation | |||
| """ | |||
| label = np.concatenate(self.label) | |||
| logit = np.concatenate(self.logit) | |||
| sort_label = label.argsort()[::-1] | |||
| sort_logit = logit.argsort()[::-1] | |||
| n = len(label) | |||
| d_acc = 0 | |||
| for i in range(n): | |||
| d = np.where(sort_label == i)[0] - np.where(sort_logit == i)[0] | |||
| d_acc += d**2 | |||
| ps = 1 - 6*d_acc/n/(n**2-1) | |||
| return ps | |||
| def get_dataset(batch_size=1, repeat_count=1, distribute_file=''): | |||
| ''' | |||
| """ | |||
| get dataset | |||
| ''' | |||
| """ | |||
| _ = distribute_file | |||
| ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", | |||
| @@ -92,7 +166,11 @@ def get_dataset(batch_size=1, repeat_count=1, distribute_file=''): | |||
| ds = ds.map(input_columns="segment_ids", operations=type_cast_op) | |||
| ds = ds.map(input_columns="input_mask", operations=type_cast_op) | |||
| ds = ds.map(input_columns="input_ids", operations=type_cast_op) | |||
| ds = ds.map(input_columns="label_ids", operations=type_cast_op) | |||
| if cfg.task == "Regression": | |||
| type_cast_op_float = C.TypeCast(mstype.float32) | |||
| ds = ds.map(input_columns="label_ids", operations=type_cast_op_float) | |||
| else: | |||
| ds = ds.map(input_columns="label_ids", operations=type_cast_op) | |||
| ds = ds.repeat(repeat_count) | |||
| # apply shuffle operation | |||
| @@ -103,10 +181,11 @@ def get_dataset(batch_size=1, repeat_count=1, distribute_file=''): | |||
| ds = ds.batch(batch_size, drop_remainder=True) | |||
| return ds | |||
| def bert_predict(Evaluation): | |||
| ''' | |||
| """ | |||
| prediction function | |||
| ''' | |||
| """ | |||
| target = args_opt.device_target | |||
| if target == "Ascend": | |||
| devid = int(os.getenv('DEVICE_ID')) | |||
| @@ -131,15 +210,33 @@ def bert_predict(Evaluation): | |||
| return model, dataset | |||
| def test_eval(): | |||
| ''' | |||
| """ | |||
| evaluation function | |||
| ''' | |||
| task_type = BertNER if cfg.task == "NER" else BertCLS | |||
| """ | |||
| if cfg.task == "SeqLabeling": | |||
| task_type = BertNER | |||
| elif cfg.task == "Regression": | |||
| task_type = BertReg | |||
| elif cfg.task == "Classification": | |||
| task_type = BertCLS | |||
| elif cfg.task == "COLA": | |||
| task_type = BertCLS | |||
| else: | |||
| raise ValueError("Task not supported.") | |||
| model, dataset = bert_predict(task_type) | |||
| if cfg.clue_benchmark: | |||
| submit(model, cfg.data_file, bert_net_cfg.seq_length) | |||
| else: | |||
| callback = F1() if cfg.task == "NER" else Accuracy() | |||
| if cfg.task == "SeqLabeling": | |||
| callback = F1() | |||
| elif cfg.task == "COLA": | |||
| callback = MCC() | |||
| elif cfg.task == "Regression": | |||
| callback = Spearman_Correlation() | |||
| else: | |||
| callback = Accuracy() | |||
| columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"] | |||
| for data in dataset.create_dict_iterator(): | |||
| input_data = [] | |||
| @@ -149,10 +246,19 @@ def test_eval(): | |||
| logits = model.predict(input_ids, input_mask, token_type_id, label_ids) | |||
| callback.update(logits, label_ids) | |||
| print("==============================================================") | |||
| if cfg.task == "NER": | |||
| if cfg.task == "SeqLabeling": | |||
| print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP))) | |||
| print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN))) | |||
| print("F1 {:.6f} ".format(2*callback.TP / (2*callback.TP + callback.FP + callback.FN))) | |||
| elif cfg.task == "COLA": | |||
| TP = callback.TP | |||
| TN = callback.TN | |||
| FP = callback.FP | |||
| FN = callback.FN | |||
| mcc = (TP*TN-FP*FN)/math.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) | |||
| print("MCC: {:.6f}".format(mcc)) | |||
| elif cfg.task == "Regression": | |||
| print("Spearman Correlation is {:.6f}".format(callback.cal()[0])) | |||
| else: | |||
| print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num, | |||
| callback.acc_num / callback.total_num)) | |||
| @@ -13,13 +13,13 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| ''' | |||
| """ | |||
| Bert finetune script. | |||
| ''' | |||
| """ | |||
| import os | |||
| import argparse | |||
| from src.utils import BertFinetuneCell, BertCLS, BertNER, BertSquad, BertSquadCell | |||
| from src.utils import BertFinetuneCell, BertCLS, BertNER, BertSquad, BertSquadCell, BertReg | |||
| from src.finetune_config import cfg, bert_net_cfg, tag_to_index | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore import context | |||
| @@ -34,14 +34,14 @@ from mindspore.train.callback import CheckpointConfig, ModelCheckpoint | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| class LossCallBack(Callback): | |||
| ''' | |||
| """ | |||
| Monitor the loss in training. | |||
| If the loss is NAN or INF, terminate training. | |||
| Note: | |||
| If per_print_times is 0, do not print loss. | |||
| Args: | |||
| per_print_times (int): Print loss every times. Default: 1. | |||
| ''' | |||
| """ | |||
| def __init__(self, per_print_times=1): | |||
| super(LossCallBack, self).__init__() | |||
| if not isinstance(per_print_times, int) or per_print_times < 0: | |||
| @@ -56,16 +56,20 @@ class LossCallBack(Callback): | |||
| f.write("\n") | |||
| def get_dataset(batch_size=1, repeat_count=1, distribute_file=''): | |||
| ''' | |||
| """ | |||
| get dataset | |||
| ''' | |||
| """ | |||
| ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", | |||
| "segment_ids", "label_ids"]) | |||
| type_cast_op = C.TypeCast(mstype.int32) | |||
| ds = ds.map(input_columns="segment_ids", operations=type_cast_op) | |||
| ds = ds.map(input_columns="input_mask", operations=type_cast_op) | |||
| ds = ds.map(input_columns="input_ids", operations=type_cast_op) | |||
| ds = ds.map(input_columns="label_ids", operations=type_cast_op) | |||
| if cfg.task == "Regression": | |||
| type_cast_op_float = C.TypeCast(mstype.float32) | |||
| ds = ds.map(input_columns="label_ids", operations=type_cast_op_float) | |||
| else: | |||
| ds = ds.map(input_columns="label_ids", operations=type_cast_op) | |||
| ds = ds.repeat(repeat_count) | |||
| # apply shuffle operation | |||
| @@ -77,9 +81,9 @@ def get_dataset(batch_size=1, repeat_count=1, distribute_file=''): | |||
| return ds | |||
| def get_squad_dataset(batch_size=1, repeat_count=1, distribute_file=''): | |||
| ''' | |||
| """ | |||
| get SQuAD dataset | |||
| ''' | |||
| """ | |||
| ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids", | |||
| "start_positions", "end_positions", | |||
| "unique_ids", "is_impossible"]) | |||
| @@ -97,9 +101,9 @@ def get_squad_dataset(batch_size=1, repeat_count=1, distribute_file=''): | |||
| return ds | |||
| def test_train(): | |||
| ''' | |||
| """ | |||
| finetune function | |||
| ''' | |||
| """ | |||
| target = args_opt.device_target | |||
| if target == "Ascend": | |||
| devid = int(os.getenv('DEVICE_ID')) | |||
| @@ -113,7 +117,7 @@ def test_train(): | |||
| raise Exception("Target error, GPU or Ascend is supported.") | |||
| #BertCLSTrain for classification | |||
| #BertNERTrain for sequence labeling | |||
| if cfg.task == 'NER': | |||
| if cfg.task == 'SeqLabeling': | |||
| if cfg.use_crf: | |||
| netwithloss = BertNER(bert_net_cfg, True, num_labels=len(tag_to_index), use_crf=True, | |||
| tag_to_index=tag_to_index, dropout_prob=0.1) | |||
| @@ -121,8 +125,12 @@ def test_train(): | |||
| netwithloss = BertNER(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1) | |||
| elif cfg.task == 'SQUAD': | |||
| netwithloss = BertSquad(bert_net_cfg, True, 2, dropout_prob=0.1) | |||
| else: | |||
| elif cfg.task == 'Regression': | |||
| netwithloss = BertReg(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1) | |||
| elif cfg.task == 'Classification': | |||
| netwithloss = BertCLS(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1) | |||
| else: | |||
| raise Exception("Target error, GPU or Ascend is supported.") | |||
| if cfg.task == 'SQUAD': | |||
| dataset = get_squad_dataset(bert_net_cfg.batch_size, cfg.epoch_num) | |||
| else: | |||
| @@ -13,9 +13,9 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| ''' | |||
| """ | |||
| Functional Cells used in Bert finetune and evaluation. | |||
| ''' | |||
| """ | |||
| import mindspore.nn as nn | |||
| from mindspore.common.initializer import TruncatedNormal | |||
| @@ -245,6 +245,32 @@ class BertSquadCell(nn.Cell): | |||
| ret = (loss, cond) | |||
| return F.depend(ret, succ) | |||
| class BertRegressionModel(nn.Cell): | |||
| """ | |||
| Bert finetune model for regression task | |||
| """ | |||
| def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False): | |||
| super(BertRegressionModel, self).__init__() | |||
| self.bert = BertModel(config, is_training, use_one_hot_embeddings) | |||
| self.cast = P.Cast() | |||
| self.weight_init = TruncatedNormal(config.initializer_range) | |||
| self.log_softmax = P.LogSoftmax(axis=-1) | |||
| self.dtype = config.dtype | |||
| self.num_labels = num_labels | |||
| self.dropout = nn.Dropout(1 - dropout_prob) | |||
| self.dense_1 = nn.Dense(config.hidden_size, 1, weight_init=self.weight_init, | |||
| has_bias=True).to_float(mstype.float16) | |||
| def construct(self, input_ids, input_mask, token_type_id): | |||
| _, pooled_output, _ = self.bert(input_ids, token_type_id, input_mask) | |||
| cls = self.cast(pooled_output, self.dtype) | |||
| cls = self.dropout(cls) | |||
| logits = self.dense_1(cls) | |||
| logits = self.cast(logits, self.dtype) | |||
| return logits | |||
| class BertCLSModel(nn.Cell): | |||
| """ | |||
| This class is responsible for classification task evaluation, i.e. XNLI(num_labels=3), | |||
| @@ -274,9 +300,9 @@ class BertCLSModel(nn.Cell): | |||
| return log_probs | |||
| class BertSquadModel(nn.Cell): | |||
| ''' | |||
| This class is responsible for SQuAD | |||
| ''' | |||
| """ | |||
| Bert finetune model for SQuAD v1.1 task | |||
| """ | |||
| def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False): | |||
| super(BertSquadModel, self).__init__() | |||
| self.bert = BertModel(config, is_training, use_one_hot_embeddings) | |||
| @@ -401,9 +427,9 @@ class BertNER(nn.Cell): | |||
| return loss | |||
| class BertSquad(nn.Cell): | |||
| ''' | |||
| """ | |||
| Train interface for SQuAD finetuning task. | |||
| ''' | |||
| """ | |||
| def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False): | |||
| super(BertSquad, self).__init__() | |||
| self.bert = BertSquadModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings) | |||
| @@ -432,3 +458,24 @@ class BertSquad(nn.Cell): | |||
| end_logits = self.squeeze(logits[:, :, 1:2]) | |||
| total_loss = (unique_id, start_logits, end_logits) | |||
| return total_loss | |||
| class BertReg(nn.Cell): | |||
| """ | |||
| Bert finetune model with loss for regression task | |||
| """ | |||
| def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False): | |||
| super(BertReg, self).__init__() | |||
| self.bert = BertRegressionModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings) | |||
| self.loss = nn.MSELoss() | |||
| self.is_training = is_training | |||
| self.sigmoid = P.Sigmoid() | |||
| self.cast = P.Cast() | |||
| self.mul = P.Mul() | |||
| def construct(self, input_ids, input_mask, token_type_id, labels): | |||
| logits = self.bert(input_ids, input_mask, token_type_id) | |||
| if self.is_training: | |||
| loss = self.loss(logits, labels) | |||
| else: | |||
| loss = logits | |||
| return loss | |||