You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import os
  17. import time
  18. import argparse
  19. import random
  20. import numpy as np
  21. from dataset import create_dataset
  22. from lr_generator import get_lr
  23. from config import config
  24. from mindspore import context
  25. from mindspore import Tensor
  26. from mindspore import nn
  27. from mindspore.model_zoo.mobilenet import mobilenet_v2
  28. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  29. from mindspore.nn.optim.momentum import Momentum
  30. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  31. from mindspore.nn.loss.loss import _Loss
  32. from mindspore.ops import operations as P
  33. from mindspore.ops import functional as F
  34. from mindspore.common import dtype as mstype
  35. from mindspore.train.model import Model, ParallelMode
  36. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
  37. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  38. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  39. import mindspore.dataset.engine as de
  40. from mindspore.communication.management import init
  41. random.seed(1)
  42. np.random.seed(1)
  43. de.config.set_seed(1)
  44. parser = argparse.ArgumentParser(description='Image classification')
  45. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  46. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  47. args_opt = parser.parse_args()
  48. device_id = int(os.getenv('DEVICE_ID'))
  49. rank_id = int(os.getenv('RANK_ID'))
  50. rank_size = int(os.getenv('RANK_SIZE'))
  51. run_distribute = rank_size > 1
  52. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False)
  53. class CrossEntropyWithLabelSmooth(_Loss):
  54. """
  55. CrossEntropyWith LabelSmooth.
  56. Args:
  57. smooth_factor (float): smooth factor, default=0.
  58. num_classes (int): num classes
  59. Returns:
  60. None.
  61. Examples:
  62. >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
  63. """
  64. def __init__(self, smooth_factor=0., num_classes=1000):
  65. super(CrossEntropyWithLabelSmooth, self).__init__()
  66. self.onehot = P.OneHot()
  67. self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
  68. self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
  69. self.ce = nn.SoftmaxCrossEntropyWithLogits()
  70. self.mean = P.ReduceMean(False)
  71. self.cast = P.Cast()
  72. def construct(self, logit, label):
  73. one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value)
  74. out_loss = self.ce(logit, one_hot_label)
  75. out_loss = self.mean(out_loss, 0)
  76. return out_loss
  77. class Monitor(Callback):
  78. """
  79. Monitor loss and time.
  80. Args:
  81. lr_init (numpy array): train lr
  82. Returns:
  83. None
  84. Examples:
  85. >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
  86. """
  87. def __init__(self, lr_init=None):
  88. super(Monitor, self).__init__()
  89. self.lr_init = lr_init
  90. self.lr_init_len = len(lr_init)
  91. def epoch_begin(self, run_context):
  92. self.losses = []
  93. self.epoch_time = time.time()
  94. def epoch_end(self, run_context):
  95. cb_params = run_context.original_args()
  96. epoch_mseconds = (time.time() - self.epoch_time) * 1000
  97. per_step_mseconds = epoch_mseconds / cb_params.batch_num
  98. print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
  99. per_step_mseconds,
  100. np.mean(self.losses)
  101. ))
  102. def step_begin(self, run_context):
  103. self.step_time = time.time()
  104. def step_end(self, run_context):
  105. cb_params = run_context.original_args()
  106. step_mseconds = (time.time() - self.step_time) * 1000
  107. step_loss = cb_params.net_outputs
  108. if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
  109. step_loss = step_loss[0]
  110. if isinstance(step_loss, Tensor):
  111. step_loss = np.mean(step_loss.asnumpy())
  112. self.losses.append(step_loss)
  113. cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
  114. print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
  115. cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
  116. np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
  117. if __name__ == '__main__':
  118. if run_distribute:
  119. context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
  120. parameter_broadcast=True, mirror_mean=True)
  121. auto_parallel_context().set_all_reduce_fusion_split_indices([140])
  122. init()
  123. epoch_size = config.epoch_size
  124. net = mobilenet_v2(num_classes=config.num_classes)
  125. net.to_float(mstype.float16)
  126. for _, cell in net.cells_and_names():
  127. if isinstance(cell, nn.Dense):
  128. cell.add_flags_recursive(fp32=True)
  129. if config.label_smooth > 0:
  130. loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
  131. else:
  132. loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
  133. print("train args: ", args_opt, "\ncfg: ", config,
  134. "\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
  135. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
  136. repeat_num=epoch_size, batch_size=config.batch_size)
  137. step_size = dataset.get_dataset_size()
  138. if args_opt.pre_trained:
  139. param_dict = load_checkpoint(args_opt.pre_trained)
  140. load_param_into_net(net, param_dict)
  141. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  142. lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config.lr,
  143. warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size))
  144. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
  145. config.weight_decay, config.loss_scale)
  146. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
  147. cb = None
  148. if rank_id == 0:
  149. cb = [Monitor(lr_init=lr.asnumpy())]
  150. if config.save_checkpoint:
  151. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  152. keep_checkpoint_max=config.keep_checkpoint_max)
  153. ckpt_cb = ModelCheckpoint(prefix="mobilenet", directory=config.save_checkpoint_path, config=config_ck)
  154. cb += [ckpt_cb]
  155. model.train(epoch_size, dataset, callbacks=cb)