|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """launch train script"""
- import os
- import sys
- import json
- import subprocess
- import shutil
- from argparse import ArgumentParser
-
- def parse_args():
- """
- parse args .
-
- Args:
-
- Returns:
- args.
-
- Examples:
- >>> parse_args()
- """
- parser = ArgumentParser(description="mindspore distributed training launch "
- "helper utilty that will spawn up "
- "multiple distributed processes")
- parser.add_argument("--nproc_per_node", type=int, default=1,
- help="The number of processes to launch on each node, "
- "for D training, this is recommended to be set "
- "to the number of D in your system so that "
- "each process can be bound to a single D.")
- parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7",
- help="will use the visible devices sequentially")
- parser.add_argument("--server_id", type=str, default="",
- help="server ip")
- parser.add_argument("--training_script", type=str,
- help="The full path to the single D training "
- "program/script to be launched in parallel, "
- "followed by all the arguments for the "
- "training script")
- # rest from the training program
- args, unknown = parser.parse_known_args()
- args.training_script_args = unknown
- return args
-
-
- def main():
- print("start", __file__)
- args = parse_args()
- print(args)
- visible_devices = args.visible_devices.split(',')
- assert os.path.isfile(args.training_script)
- assert len(visible_devices) >= args.nproc_per_node
- print('visible_devices:{}'.format(visible_devices))
- if not args.server_id:
- print('pleaser input server ip!!!')
- exit(0)
- print('server_id:{}'.format(args.server_id))
-
- # construct hccn_table
- hccn_configs = open('/etc/hccn.conf', 'r').readlines()
- device_ips = {}
- for hccn_item in hccn_configs:
- hccn_item = hccn_item.strip()
- if hccn_item.startswith('address_'):
- device_id, device_ip = hccn_item.split('=')
- device_id = device_id.split('_')[1]
- device_ips[device_id] = device_ip
- print('device_id:{}, device_ip:{}'.format(device_id, device_ip))
- hccn_table = {}
- hccn_table['board_id'] = '0x0000'
- hccn_table['chip_info'] = '910'
- hccn_table['deploy_mode'] = 'lab'
- hccn_table['group_count'] = '1'
- hccn_table['group_list'] = []
- instance_list = []
- usable_dev = ''
- for instance_id in range(args.nproc_per_node):
- instance = {}
- instance['devices'] = []
- device_id = visible_devices[instance_id]
- device_ip = device_ips[device_id]
- usable_dev += str(device_id)
- instance['devices'].append({
- 'device_id': device_id,
- 'device_ip': device_ip,
- })
- instance['rank_id'] = str(instance_id)
- instance['server_id'] = args.server_id
- instance_list.append(instance)
- hccn_table['group_list'].append({
- 'device_num': str(args.nproc_per_node),
- 'server_num': '1',
- 'group_name': '',
- 'instance_count': str(args.nproc_per_node),
- 'instance_list': instance_list,
- })
- hccn_table['para_plane_nic_location'] = 'device'
- hccn_table['para_plane_nic_name'] = []
- for instance_id in range(args.nproc_per_node):
- eth_id = visible_devices[instance_id]
- hccn_table['para_plane_nic_name'].append('eth{}'.format(eth_id))
- hccn_table['para_plane_nic_num'] = str(args.nproc_per_node)
- hccn_table['status'] = 'completed'
-
- # save hccn_table to file
- table_path = os.getcwd()
- if not os.path.exists(table_path):
- os.mkdir(table_path)
- table_fn = os.path.join(table_path,
- 'rank_table_{}p_{}_{}.json'.format(args.nproc_per_node, usable_dev, args.server_id))
- with open(table_fn, 'w') as table_fp:
- json.dump(hccn_table, table_fp, indent=4)
- sys.stdout.flush()
-
- # spawn the processes
- processes = []
- cmds = []
- log_files = []
- env = os.environ.copy()
- env['RANK_SIZE'] = str(args.nproc_per_node)
- cur_path = os.getcwd()
- for rank_id in range(0, args.nproc_per_node):
- os.chdir(cur_path)
- device_id = visible_devices[rank_id]
- device_dir = os.path.join(cur_path, 'device{}'.format(rank_id))
- env['RANK_ID'] = str(rank_id)
- env['DEVICE_ID'] = str(device_id)
- if args.nproc_per_node > 1:
- env['MINDSPORE_HCCL_CONFIG_PATH'] = table_fn
- env['RANK_TABLE_FILE'] = table_fn
- if os.path.exists(device_dir):
- shutil.rmtree(device_dir)
- os.mkdir(device_dir)
- os.chdir(device_dir)
- cmd = [sys.executable, '-u']
- cmd.append(args.training_script)
- cmd.extend(args.training_script_args)
- log_file = open('{dir}/log{id}.log'.format(dir=device_dir, id=rank_id), 'w')
- process = subprocess.Popen(cmd, stdout=log_file, stderr=log_file, env=env)
- processes.append(process)
- cmds.append(cmd)
- log_files.append(log_file)
- for process, cmd, log_file in zip(processes, cmds, log_files):
- process.wait()
- if process.returncode != 0:
- raise subprocess.CalledProcessError(returncode=process, cmd=cmd)
- log_file.close()
-
-
- if __name__ == "__main__":
- main()
|