|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Data operations, will be used in train.py and eval.py
- """
- import mindspore.common.dtype as mstype
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as C2
- import mindspore.dataset.vision.c_transforms as C
-
-
- def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0):
- """
- create a train or eval dataset
-
- Args:
- dataset_path(string): the path of dataset.
- do_train(bool): whether dataset is used for train or eval.
- batch_size(int): the batch size of dataset. Default: 16.
- device_num (int): Number of shards that the dataset should be divided into (default=1).
- rank (int): The shard ID within num_shards (default=0).
-
- Returns:
- dataset
- """
- if device_num == 1:
- data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
- else:
- data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
- num_shards=device_num, shard_id=rank)
- # define map operations
- if do_train:
- trans = [
- C.RandomCropDecodeResize(299),
- C.RandomHorizontalFlip(prob=0.5),
- C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
- ]
- else:
- trans = [
- C.Decode(),
- C.Resize(320),
- C.CenterCrop(299)
- ]
- trans += [
- C.Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]),
- C.HWC2CHW(),
- C2.TypeCast(mstype.float32)
- ]
-
- type_cast_op = C2.TypeCast(mstype.int32)
- data_set = data_set.map(input_columns="image", operations=trans, num_parallel_workers=8)
- data_set = data_set.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
- # apply batch operations
- data_set = data_set.batch(batch_size, drop_remainder=True)
- return data_set
|