# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Data operations, will be used in train.py and eval.py """ import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C2 import mindspore.dataset.vision.c_transforms as C def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. batch_size(int): the batch size of dataset. Default: 16. device_num (int): Number of shards that the dataset should be divided into (default=1). rank (int): The shard ID within num_shards (default=0). Returns: dataset """ if device_num == 1: data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True) else: data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=device_num, shard_id=rank) # define map operations if do_train: trans = [ C.RandomCropDecodeResize(299), C.RandomHorizontalFlip(prob=0.5), C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) ] else: trans = [ C.Decode(), C.Resize(320), C.CenterCrop(299) ] trans += [ C.Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]), C.HWC2CHW(), C2.TypeCast(mstype.float32) ] type_cast_op = C2.TypeCast(mstype.int32) data_set = data_set.map(input_columns="image", operations=trans, num_parallel_workers=8) data_set = data_set.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True) return data_set