|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """basic"""
-
- import numpy as np
- import mindspore.common.dtype as mstype
- from mindspore.common.seed import _get_graph_seed
- from mindspore.common.tensor import Tensor
- from mindspore.common.initializer import initializer
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.ops.functional import identity
- from mindspore.ops.operations import _inner_ops as inner
- from mindspore.ops.primitive import constexpr
- from mindspore.common.parameter import Parameter
- from mindspore._extends import cell_attr_register
- from mindspore._checkparam import Rel, Validator
- from mindspore.common.api import ms_function
- from mindspore import context
- from ..cell import Cell
- from .activation import get_activation
-
-
- __all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold',
- 'MatrixDiag', 'MatrixDiagPart', 'MatrixSetDiag']
-
-
- class Dropout(Cell):
- r"""
- Dropout layer for the input.
-
- Randomly set some elements of the input tensor to zero with probability :math:`1 - keep\_prob` during training
- using samples from a Bernoulli distribution.
-
- Note:
- Each channel will be zeroed out independently on every construct call.
-
- The outputs are scaled by a factor of :math:`\frac{1}{keep\_prob}` during training so
- that the output layer remains at a similar scale. During inference, this
- layer returns the same tensor as the input.
-
- This technique is proposed in paper `Dropout: A Simple Way to Prevent Neural Networks from Overfitting
- <http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf>`_ and proved to be effective to reduce
- over-fitting and prevents neurons from co-adaptation. See more details in `Improving neural networks by
- preventing co-adaptation of feature detectors
- <https://arxiv.org/pdf/1207.0580.pdf>`_.
-
- Args:
- keep_prob (float): The keep rate, greater than 0 and less equal than 1. E.g. rate=0.9,
- dropping out 10% of input units. Default: 0.5.
- dtype (:class:`mindspore.dtype`): Data type of input. Default: mindspore.float32.
-
- Raises:
- ValueError: If `keep_prob` is not in range (0, 1].
-
- Inputs:
- - **input** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, output tensor with the same shape as the input.
-
- Examples:
- >>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32)
- >>> net = nn.Dropout(keep_prob=0.8)
- >>> net(x)
- [[[1.0, 1.0, 1.0],
- [1.0, 1.0, 1.0]],
- [[1.0, 1.0, 1.0],
- [1.0, 1.0, 1.0]]]
- """
-
- def __init__(self, keep_prob=0.5, dtype=mstype.float32):
- super(Dropout, self).__init__()
- if keep_prob <= 0 or keep_prob > 1:
- raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob))
- Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
- Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name)
- self.keep_prob = keep_prob
- seed0, seed1 = _get_graph_seed(0, "dropout")
- self.seed0 = seed0
- self.seed1 = seed1
- self.dtype = dtype
- self.get_shape = P.Shape()
- self.dropout_gen_mask = P.DropoutGenMask(Seed0=self.seed0, Seed1=self.seed1)
- self.dropout_do_mask = P.DropoutDoMask()
- self.cast = P.Cast()
- self.is_gpu = context.get_context('device_target') in ["GPU"]
- self.dropout = P.Dropout(keep_prob)
-
- def construct(self, x):
- if not self.training:
- return x
-
- if self.is_gpu:
- out, _ = self.dropout(x)
- return out
-
- if self.keep_prob == 1:
- return x
-
- shape = self.get_shape(x)
- dtype = P.DType()(x)
- if _is_float_dtype(dtype):
- keep_prob = self.cast(self.keep_prob, dtype)
- else:
- keep_prob = self.cast(self.keep_prob, mstype.float16)
- output = self.dropout_gen_mask(shape, keep_prob)
- return self.dropout_do_mask(x, output, keep_prob)
-
- def extend_repr(self):
- str_info = 'keep_prob={}, dtype={}'.format(self.keep_prob, self.dtype)
- return str_info
-
-
- class Flatten(Cell):
- r"""
- Flatten layer for the input.
-
- Flattens a tensor without changing dimension of batch size on the 0-th axis.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
- the product of the remaining dimensions.
-
- Examples:
- >>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
- >>> net = nn.Flatten()
- >>> net(input)
- [[1.2 1.2 2.1 2.1]
- [2.2 2.2 3.2 3.2]]
- """
-
- def __init__(self):
- super(Flatten, self).__init__()
-
- def construct(self, x):
- return F.reshape(x, (F.shape(x)[0], -1))
-
-
- class Dense(Cell):
- r"""
- The dense connected layer.
-
- Applies dense connected layer for the input. This layer implements the operation as:
-
- .. math::
- \text{outputs} = \text{activation}(\text{inputs} * \text{kernel} + \text{bias}),
-
- where :math:`\text{activation}` is the activation function passed as the activation
- argument (if passed in), :math:`\text{kernel}` is a weight matrix with the same
- data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
- with the same data type as the inputs created by the layer (only if has_bias is True).
-
- Args:
- in_channels (int): The number of channels in the input space.
- out_channels (int): The number of channels in the output space.
- weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
- is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
- bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
- same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
- has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
- activation (str): activate function applied to the output of the fully connected layer, eg. 'ReLU'.
- Default: None.
-
- Raises:
- ValueError: If weight_init or bias_init shape is incorrect.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
-
- Outputs:
- Tensor of shape :math:`(N, out\_channels)`.
-
- Examples:
- >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
- >>> net = nn.Dense(3, 4)
- >>> net(input)
- [[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
- [ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
- """
- @cell_attr_register(attrs=['has_bias', 'activation'])
- def __init__(self,
- in_channels,
- out_channels,
- weight_init='normal',
- bias_init='zeros',
- has_bias=True,
- activation=None):
- super(Dense, self).__init__()
- self.in_channels = Validator.check_positive_int(in_channels)
- self.out_channels = Validator.check_positive_int(out_channels)
- self.has_bias = Validator.check_bool(has_bias)
-
- if isinstance(weight_init, Tensor):
- if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
- weight_init.shape[1] != in_channels:
- raise ValueError("Weight init shape error.")
- self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
-
- self.bias = None
- if self.has_bias:
- if isinstance(bias_init, Tensor):
- if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
- raise ValueError("Bias init shape error.")
- self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
- self.bias_add = P.BiasAdd()
-
- self.matmul = P.MatMul(transpose_b=True)
- self.activation = get_activation(activation)
- self.activation_flag = self.activation is not None
-
- def construct(self, x):
- x = self.matmul(x, self.weight)
- if self.has_bias:
- x = self.bias_add(x, self.bias)
- if self.activation_flag:
- x = self.activation(x)
- return x
-
- def extend_repr(self):
- s = 'input_channels={}, output_channels={}'.format(self.in_channels, self.out_channels)
- if self.has_bias:
- s += ', has_bias={}'.format(self.has_bias)
- if self.activation_flag:
- s += ', activation={}'.fomat(self.activation)
- return s
-
-
- @constexpr
- def _is_equal_one(x):
- if x is None:
- return False
- return bool(x.asnumpy().mean() == 1.0)
-
- @constexpr
- def _dtype_check(x_dtype):
- if x_dtype not in [mstype.float32, mstype.float16]:
- raise TypeError("The input type must be float32 or float16.")
-
- @constexpr
- def _is_float_dtype(dtype):
- if dtype in [mstype.float32, mstype.float16]:
- return True
- return False
-
- class ClipByNorm(Cell):
- r"""
- Clips tensor values to a maximum :math:`L_2`-norm.
-
- The output of this layer remains the same if the :math:`L_2`-norm of the input tensor
- is not greater than the argument clip_norm. Otherwise the tensor will be normalized as:
-
- .. math::
- \text{output}(X) = \frac{\text{clip_norm} * X}{L_2(X)},
-
- where :math:`L_2(X)` is the :math:`L_2`-norm of :math:`X`.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape N-D. The type must be float32 or float16.
- - **clip_norm** (Tensor) - A scalar Tensor of shape :math:`()` or :math:`(1)`.
-
- Outputs:
- Tensor, clipped tensor with the same shape as the input, whose type is float32.
-
- Examples:
- >>> net = nn.ClipByNorm()
- >>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
- >>> clip_norm = Tensor(np.array([100]).astype(np.float32))
- >>> net(input, clip_norm)
-
- """
-
- def __init__(self):
- super(ClipByNorm, self).__init__()
- self.reduce_sum = P.ReduceSum(keep_dims=True)
- self.select_ = P.Select()
- self.greater_ = P.Greater()
- self.cast = P.Cast()
- self.sqrt = P.Sqrt()
- self.max_op = P.Maximum()
- self.shape = P.Shape()
- self.reshape = P.Reshape()
- self.fill = P.Fill()
- self.expand_dims = P.ExpandDims()
- self.dtype = P.DType()
-
- @ms_function
- def construct(self, x, clip_norm):
- """add ms_function decorator for pynative mode"""
- mul_x = F.square(x)
- l2sum = self.cast(self.reduce_sum(mul_x), mstype.float32)
- cond = self.greater_(l2sum, 0)
- ones_ = self.fill(self.dtype(cond), self.shape(cond), 1.0)
- l2sum_safe = self.select_(cond, l2sum, self.cast(ones_, self.dtype(l2sum)))
- l2norm = self.select_(cond, self.sqrt(l2sum_safe), l2sum)
-
- _dtype_check(self.dtype(x))
- if _is_equal_one(clip_norm):
- intermediate = x
- else:
- intermediate = x * clip_norm
-
- max_norm = self.max_op(l2norm, clip_norm)
- values_clip = self.cast(intermediate, mstype.float32) / self.expand_dims(max_norm, -1)
- values_clip = self.reshape(values_clip, self.shape(x))
- values_clip = identity(values_clip)
- return values_clip
-
-
- class Norm(Cell):
- """
- Computes the norm of vectors, currently including Euclidean norm, i.e., :math:`L_2`-norm.
-
- Args:
- axis (Union[tuple, int]): The axis over which to compute vector norms. Default: ().
- keep_dims (bool): If true, the axis indicated in `axis` are kept with size 1. Otherwise,
- the dimensions in `axis` are removed from the output shape. Default: False.
-
- Inputs:
- - **input** (Tensor) - Tensor which is not empty.
-
- Outputs:
- Tensor, output tensor with dimensions in 'axis' reduced to 1 will be returned if 'keep_dims' is True;
- otherwise a Tensor with dimensions in 'axis' removed is returned.
-
- Examples:
- >>> net = nn.Norm(axis=0)
- >>> input = Tensor(np.random.randint(0, 10, [2, 4]), mindspore.float32)
- >>> net(input)
- [2.236068 9.848858 4. 5.656854]
- """
-
- def __init__(self, axis=(), keep_dims=False):
- super(Norm, self).__init__()
- Validator.check_value_type("keep_dims", keep_dims, [bool], self.cls_name)
- self.axis = axis
- self.keep_dims = keep_dims
- self.reduce_sum = P.ReduceSum(True)
- self.sqrt = P.Sqrt()
- self.squeeze = P.Squeeze(self.axis)
-
- def construct(self, x):
- x = self.sqrt(self.reduce_sum(F.square(x), self.axis))
-
- if not self.keep_dims:
- x = self.squeeze(x)
- return x
-
- def extend_repr(self):
- str_info = 'axis={}, keep_dims={}'.format(self.axis, self.keep_dims)
- return str_info
-
-
- class OneHot(Cell):
- """
- Returns a one-hot tensor.
-
- The locations represented by indices in argument 'indices' take value on_value,
- while all other locations take value off_value.
-
- Note:
- If the input indices is rank :math:`N`, the output will have rank :math:`N+1`. The new
- axis is created at dimension `axis`.
-
- Args:
- axis (int): Features x depth if axis is -1, depth x features
- if axis is 0. Default: -1.
- depth (int): A scalar defining the depth of the one hot dimension. Default: 1.
- on_value (float): A scalar defining the value to fill in output[i][j]
- when indices[j] = i. Default: 1.0.
- off_value (float): A scalar defining the value to fill in output[i][j]
- when indices[j] != i. Default: 0.0.
- dtype (:class:`mindspore.dtype`): Data type of 'on_value' and 'off_value', not the
- data type of indices. Default: mindspore.float32.
-
- Inputs:
- - **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape.
-
- Outputs:
- Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with
- on_value and off_value.
-
- Examples:
- >>> net = nn.OneHot(depth=4, axis=1)
- >>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
- >>> net(indices)
- [[[0. 0.]
- [1. 0.]
- [0. 0.]
- [0. 1.]]
- [[1. 0.]
- [0. 0.]
- [0. 1.]
- [0. 0.]]]
- """
-
- def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, dtype=mstype.float32):
- super(OneHot, self).__init__()
- self.onehot = P.OneHot(axis)
- self.depth = depth
- self.dtype = dtype
- self.on_value = on_value
- self.off_value = off_value
-
- def construct(self, indices):
- return self.onehot(indices, self.depth, F.cast(self.on_value, self.dtype), F.cast(self.off_value, self.dtype))
-
-
-
- class Pad(Cell):
- """
- Pads the input tensor according to the paddings and mode.
-
- Args:
- paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of
- paddings are int type. For `D` th dimension of input, paddings[D, 0] indicates how many sizes to be
- extended ahead of the `D` th dimension of the input tensor, and paddings[D, 1] indicates how many sizes to
- be extended behind of the `D` th dimension of the input tensor.
- mode (str): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC".
- Default: "CONSTANT".
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, the tensor after padding.
-
- - If `mode` is "CONSTANT", it fills the edge with 0, regardless of the values of the `input_x`.
- If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
- Outputs is [[0,0,0,0,0,0,0],[0,0,1,2,3,0,0],[0,0,4,5,6,0,0],[0,0,7,8,9,0,0],[0,0,0,0,0,0,0]].
- - If `mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in.
- If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
- Outputs is [[6,5,4,5,6,5,4],[3,2,1,2,3,2,1],[6,5,4,5,6,5,4],[9,8,7,8,9,8,7],[6,5,4,5,6,5,4]].
- - If `mode` is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
- according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
- is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
- [[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].
-
- Examples:
- >>> from mindspore import Tensor
- >>> from mindspore.ops import operations as P
- >>> import mindspore.nn as nn
- >>> import numpy as np
- >>> class Net(nn.Cell):
- >>> def __init__(self):
- >>> super(Net, self).__init__()
- >>> self.pad = nn.Pad(paddings=((1,1),(2,2)), mode="CONSTANT")
- >>> def construct(self, x):
- >>> return self.pad(x)
- >>> x = np.random.random(size=(2, 3)).astype(np.float32)
- >>> pad = Net()
- >>> ms_output = pad(Tensor(x))
- """
-
- def __init__(self, paddings, mode="CONSTANT"):
- super(Pad, self).__init__()
- self.mode = mode
- self.paddings = paddings
- Validator.check_string(self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], 'mode', self.cls_name)
- if not isinstance(paddings, tuple):
- raise TypeError('Paddings must be tuple type.')
- for item in paddings:
- if len(item) != 2:
- raise ValueError('The shape of paddings must be (n, 2).')
- if len(paddings) > 4:
- raise ValueError('Only padding up to 4 dims is supported')
- if mode == "CONSTANT":
- self.pad = P.Pad(self.paddings)
- else:
- self.paddings = Tensor(np.array(self.paddings))
- self.pad = P.MirrorPad(mode=mode)
-
- def construct(self, x):
- if self.mode == "CONSTANT":
- x = self.pad(x)
- else:
- x = self.pad(x, self.paddings)
- return x
-
-
- class Unfold(Cell):
- """
- Extract patches from images.
- The input tensor must be a 4-D tensor and the data format is NCHW.
-
- Args:
- ksizes (Union[tuple[int], list[int]]): The size of sliding window, must be a tuple or a list of integers,
- and the format is [1, ksize_row, ksize_col, 1].
- strides (Union[tuple[int], list[int]]): Distance between the centers of the two consecutive patches,
- must be a tuple or list of int, and the format is [1, stride_row, stride_col, 1].
- rates (Union[tuple[int], list[int]]): In each extracted patch, the gap between the corresponding dimension
- pixel positions, must be a tuple or a list of integers, and the format is [1, rate_row, rate_col, 1].
- padding (str): The type of padding algorithm, is a string whose value is "same" or "valid",
- not case sensitive. Default: "valid".
-
- - same: Means that the patch can take the part beyond the original image, and this part is filled with 0.
-
- - valid: Means that the taken patch area must be completely covered in the original image.
-
- Inputs:
- - **input_x** (Tensor) - A 4-D tensor whose shape is [in_batch, in_depth, in_row, in_col] and
- data type is number.
-
- Outputs:
- Tensor, a 4-D tensor whose data type is same as 'input_x',
- and the shape is [out_batch, out_depth, out_row, out_col], the out_batch is the same as the in_batch.
-
- Examples:
- >>> net = Unfold(ksizes=[1, 2, 2, 1], strides=[1, 1, 1, 1], rates=[1, 1, 1, 1])
- >>> image = Tensor(np.ones([1, 1, 3, 3]), dtype=mstype.float16)
- >>> net(image)
- Tensor ([[[[1, 1] [1, 1]] [[1, 1], [1, 1]] [[1, 1] [1, 1]], [[1, 1], [1, 1]]]],
- shape=(1, 4, 2, 2), dtype=mstype.float16)
- """
-
- def __init__(self, ksizes, strides, rates, padding="valid"):
- super(Unfold, self).__init__()
- self.extract_image_patches = inner.ExtractImagePatches(ksizes, strides, rates, padding)
- self.transpose = P.Transpose()
- self.format_NHWC = (0, 2, 3, 1)
- self.format_NCHW = (0, 3, 1, 2)
- self.is_ge = context.get_context("enable_ge")
-
- def construct(self, input_x):
- if self.is_ge:
- x_transpose = self.transpose(input_x, self.format_NHWC)
- ret = self.extract_image_patches(x_transpose)
- result = self.transpose(ret, self.format_NCHW)
- else:
- result = self.extract_image_patches(input_x)
- return result
-
-
- @constexpr
- def _get_matrix_diag_assist(x_shape, x_dtype):
- Validator.check_integer("x rank", len(x_shape), 1, Rel.GE, "_get_matrix_diag_assist")
- base_eye = np.eye(x_shape[-1], x_shape[-1]).reshape(-1)
- assist = np.tile(base_eye, x_shape[:-1]).reshape(x_shape + (x_shape[-1],))
- return Tensor(assist, x_dtype)
-
-
- @constexpr
- def _get_matrix_diag_part_assist(x_shape, x_dtype):
- Validator.check_integer("x rank", len(x_shape), 2, Rel.GE, "_get_matrix_diag_part_assist")
- base_eye = np.eye(x_shape[-2], x_shape[-1]).reshape(-1)
- assist = np.tile(base_eye, x_shape[:-2]).reshape(x_shape)
- return Tensor(assist, x_dtype)
-
-
- class MatrixDiag(Cell):
- """
- Returns a batched diagonal tensor with a given batched diagonal values.
-
- Inputs:
- - **x** (Tensor) - The diagonal values. It can be one of the following data types:
- float32, float16, int32, int8, and uint8.
-
- Outputs:
- Tensor, has the same type as input `x`. The shape must be x.shape + (x.shape[-1], ).
-
- Examples:
- >>> x = Tensor(np.array([1, -1]), mstype.float32)
- >>> matrix_diag = nn.MatrixDiag()
- >>> result = matrix_diag(x)
- [[1. 0.]
- [0. -1.]]
- """
- def __init__(self):
- super(MatrixDiag, self).__init__()
- self.matrix_diag = inner.MatrixDiag()
- self.dtype = P.DType()
-
- def construct(self, input_x):
- x_shape = F.shape(input_x)
- x_dtype = self.dtype(input_x)
- assist = _get_matrix_diag_assist(x_shape, x_dtype)
- out_matrix_diag = self.matrix_diag(input_x, assist)
- return out_matrix_diag
-
-
- class MatrixDiagPart(Cell):
- r"""
- Returns the batched diagonal part of a batched tensor.
-
- Inputs:
- - **x** (Tensor) - The batched tensor. It can be one of the following data types:
- float32, float16, int32, int8, and uint8.
-
- Outputs:
- Tensor, has the same type as input `x`. The shape must be x.shape[:-2] + [min(x.shape[-2:])].
-
- Examples:
- >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
- >>> matrix_diag_part = nn.MatrixDiagPart()
- >>> result = matrix_diag_part(x)
- [[-1., 1.], [-1., 1.], [-1., 1.]]
- """
- def __init__(self):
- super(MatrixDiagPart, self).__init__()
- self.matrix_diag_part = inner.MatrixDiagPart()
- self.dtype = P.DType()
-
- def construct(self, input_x):
- x_shape = F.shape(input_x)
- x_dtype = self.dtype(input_x)
- assist = _get_matrix_diag_part_assist(x_shape, x_dtype)
- out_matrix_diag_part = self.matrix_diag_part(input_x, assist)
- return out_matrix_diag_part
-
-
- class MatrixSetDiag(Cell):
- r"""
- Modify the batched diagonal part of a batched tensor.
-
- Inputs:
- - **x** (Tensor) - The batched tensor. It can be one of the following data types:
- float32, float16, int32, int8, and uint8.
- - **diagonal** (Tensor) - The diagonal values.
-
- Outputs:
- Tensor, has the same type and shape as input `x`.
-
- Examples:
- >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
- >>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32)
- >>> matrix_set_diag = nn.MatrixSetDiag()
- >>> result = matrix_set_diag(x, diagonal)
- [[[-1, 0], [0, 2]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]]
- """
- def __init__(self):
- super(MatrixSetDiag, self).__init__()
- self.matrix_set_diag = inner.MatrixSetDiag()
- self.dtype = P.DType()
-
- def construct(self, input_x, diagonal):
- x_shape = F.shape(input_x)
- x_dtype = self.dtype(input_x)
- assist = _get_matrix_diag_part_assist(x_shape, x_dtype)
- out_matrix_set_diag = self.matrix_set_diag(input_x, diagonal, assist)
- return out_matrix_set_diag
|