style fix lint fixes added check in NN layer for > 4 paddings, plus lint fix fix python lint lint fix lint fix updating to pytest asserts to improve testing removed unnecc vars from test file fail checkstags/v1.0.0
| @@ -18,6 +18,7 @@ | |||
| #include <stdint.h> | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/pad_impl.cuh" | |||
| // For internal OP use, not user facing | |||
| template <typename T> | |||
| __global__ void Pad(const size_t size, const T* input, const int num, const int channels, const int old_height, | |||
| const int old_width, const int padded_height, const int padded_width, const int pad_top, | |||
| @@ -37,6 +38,7 @@ __global__ void Pad(const size_t size, const T* input, const int num, const int | |||
| return; | |||
| } | |||
| // For internal OP use, not user facing | |||
| template <typename T> | |||
| __global__ void PadNHWC(const size_t size, const T* input, const int num, const int old_height, const int old_width, | |||
| const int channels, const int padded_height, const int padded_width, const int pad_top, | |||
| @@ -57,6 +59,37 @@ __global__ void PadNHWC(const size_t size, const T* input, const int num, const | |||
| return; | |||
| } | |||
| // Used by user facing 'Pad' API | |||
| template <typename T> | |||
| __global__ void PadGeneral(const size_t size, const T *input, const int num, const int channels_orig, | |||
| const int pad_channel_before, const int pad_channel_after, const int old_height, | |||
| const int old_width, const int padded_height, const int padded_width, const int pad_top, | |||
| const int pad_left, float pad_value, T *output) { | |||
| T pad_value_template = static_cast<T>(pad_value); | |||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) { | |||
| int block_num = (pos / padded_width) / padded_height; // total blocks = (batch * channels) | |||
| const int padded_w = pos % padded_width; // x coordinate refered to by cur 'pos' | |||
| const int padded_h = (pos / padded_width) % padded_height; // y coordinate refered to by cur 'pos' | |||
| int channels_new = channels_orig + pad_channel_after + pad_channel_before; // new number of channels from padding | |||
| int channel_num = block_num % channels_new; // current channel | |||
| int batch_item = block_num / channels_new; // current item in batch | |||
| int equiv_block_num = 0; // init variable to select equivalent block to copy data from from input | |||
| if (padded_h - pad_top < 0 || padded_w - pad_left < 0 || padded_h - pad_top >= old_height || | |||
| padded_w - pad_left >= old_width || channel_num <= pad_channel_before - 1 || | |||
| channel_num > channels_orig + pad_channel_before - 1) { | |||
| output[pos] = pad_value_template; | |||
| } else { | |||
| // on a block/x,y positon that isn't padding, copy data from the correct block/x,y pos the input | |||
| // calculate from number of blocks of padding (due to channel padding) inserted prior | |||
| equiv_block_num = block_num - (batch_item * (pad_channel_before + pad_channel_after)) - pad_channel_before; | |||
| output[pos] = input[(equiv_block_num * old_height + padded_h - pad_top) * old_width + padded_w - pad_left]; | |||
| } | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| __global__ void PadGradNHWC(const size_t size, const T* dy, const int num, const int old_height, const int old_width, | |||
| const int channels, const int padded_height, const int padded_width, const int pad_top, | |||
| @@ -102,6 +135,17 @@ void CalPadNHWC(const size_t size, const T* input, const int num, const int old_ | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void CalPadGeneral(const size_t size, const T *input, const int num, const int channels_orig, | |||
| const int pad_channel_before, const int pad_channel_after, const int old_height, const int old_width, | |||
| const int padded_height, const int padded_width, const int pad_top, const int pad_left, | |||
| float pad_value, T *output, cudaStream_t cuda_stream) { | |||
| PadGeneral<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, num, channels_orig, pad_channel_before, | |||
| pad_channel_after, old_height, old_width, padded_height, | |||
| padded_width, pad_top, pad_left, pad_value, output); | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void CalPadGradNHWC(const size_t size, const T* dy, const int num, const int old_height, const int old_width, | |||
| const int channels, const int padded_height, const int padded_width, const int pad_top, | |||
| @@ -152,3 +196,13 @@ template void CalPadGradNHWC<half>(const size_t size, const half* dy, const int | |||
| const int old_width, const int channels, const int padded_height, | |||
| const int padded_width, const int pad_top, const int pad_left, half* dx, | |||
| cudaStream_t cuda_stream); | |||
| template void CalPadGeneral<float>(const size_t size, const float *input, const int num, const int channels_orig, | |||
| const int pad_channel_before, const int pad_channel_after, const int old_height, | |||
| const int old_width, const int padded_height, const int padded_width, | |||
| const int pad_top, const int pad_left, float pad_value, float *output, | |||
| cudaStream_t cuda_stream); | |||
| template void CalPadGeneral<half>(const size_t size, const half *input, const int num, const int channels_orig, | |||
| const int pad_channel_before, const int pad_channel_after, const int old_height, | |||
| const int old_width, const int padded_height, const int padded_width, | |||
| const int pad_top, const int pad_left, float pad_value, half *output, | |||
| cudaStream_t cuda_stream); | |||
| @@ -31,9 +31,13 @@ template <typename T> | |||
| void CalPadNHWC(const size_t size, const T* input, const int num, const int old_height, const int old_width, | |||
| const int channels, const int padded_height, const int padded_width, const int pad_top, const int pad_left, | |||
| float pad_value, T* output, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CalPadGradNHWC(const size_t size, const T* input, const int num, const int old_height, const int old_width, | |||
| const int channels, const int padded_height, const int padded_width, const int pad_top, | |||
| const int pad_left, T* output, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void CalPadGeneral(const size_t size, const T *input, const int num, const int channels_orig, | |||
| const int pad_channel_before, const int pad_channel_after, const int old_height, const int old_width, | |||
| const int padded_height, const int padded_width, const int pad_top, const int pad_left, | |||
| float pad_value, T *output, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_PADIMPL_H_ | |||
| @@ -42,9 +42,12 @@ class PadGpuFwdKernel : public GpuKernel { | |||
| size_t size = output_size_ / sizeof(T); | |||
| int pad_left = paddings[3][0]; | |||
| int pad_top = paddings[2][0]; | |||
| int pad_channel_before = paddings[1][0]; | |||
| int pad_channel_after = paddings[1][1]; | |||
| T pad_value = 0.0; | |||
| CalPad(size, input, input_shape_[0], input_shape_[1], input_shape_[2], input_shape_[3], output_shape_[2], | |||
| output_shape_[3], pad_top, pad_left, pad_value, output, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| CalPadGeneral(size, input, input_shape_[0], input_shape_[1], pad_channel_before, pad_channel_after, input_shape_[2], | |||
| input_shape_[3], output_shape_[2], output_shape_[3], pad_top, pad_left, pad_value, output, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| @@ -470,6 +470,8 @@ class Pad(Cell): | |||
| for item in paddings: | |||
| if len(item) != 2: | |||
| raise ValueError('The shape of paddings must be (n, 2).') | |||
| if len(paddings) > 4: | |||
| raise ValueError('Only padding up to 4 dims is supported') | |||
| if mode == "CONSTANT": | |||
| self.pad = P.Pad(self.paddings) | |||
| else: | |||
| @@ -0,0 +1,204 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import pytest | |||
| import numpy as np | |||
| import mindspore | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| from mindspore import Tensor | |||
| from mindspore.ops.composite import GradOperation | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pad_basic(): | |||
| # confirm array is being padded with 0's | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| test_arr = np.array([[1, 2], [3, 4]]).astype(np.float32) | |||
| test_arr_expected = np.array( | |||
| [[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float32) | |||
| x_test = Tensor(test_arr, dtype=mindspore.float32) | |||
| pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1))) | |||
| y_test = pad_op(x_test).asnumpy() | |||
| np.testing.assert_array_equal(y_test, test_arr_expected) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pad_row(): | |||
| # Confirm correct row padding | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| test_arr_1 = np.random.rand(40, 40).astype(np.float32) | |||
| test_paddings_1 = ((2, 3), (0, 0)) | |||
| test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32) | |||
| test_paddings_2 = ((0, 0), (0, 0), (3, 0), (0, 0)) | |||
| pad_op_row_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1) | |||
| pad_op_row_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2) | |||
| x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32) | |||
| x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32) | |||
| y_test_1 = pad_op_row_1(x_test_1).asnumpy() | |||
| y_test_2 = pad_op_row_2(x_test_2).asnumpy() | |||
| # check size | |||
| assert y_test_1.shape == (45, 40) | |||
| assert y_test_2.shape == (3, 10, 33, 30) | |||
| # check values - select correct sections | |||
| np.testing.assert_equal(y_test_1[2:-3, :], test_arr_1) | |||
| np.testing.assert_equal(y_test_2[:, :, 3:, :], test_arr_2) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pad_column(): | |||
| # Confirm correct column padding | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| test_arr_1 = np.random.randn(40, 40).astype(np.float32) | |||
| test_paddings_1 = ((0, 0), (3, 3)) | |||
| test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32) | |||
| test_paddings_2 = ((0, 0), (0, 0), (0, 0), (6, 1)) | |||
| pad_op_col_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1) | |||
| pad_op_col_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2) | |||
| x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32) | |||
| x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32) | |||
| y_test_1 = pad_op_col_1(x_test_1).asnumpy() | |||
| y_test_2 = pad_op_col_2(x_test_2).asnumpy() | |||
| # check size | |||
| assert y_test_1.shape == (40, 46) | |||
| assert y_test_2.shape == (3, 10, 30, 37) | |||
| # check values - select correct sections - should match | |||
| np.testing.assert_equal(y_test_1[:, 3:-3], test_arr_1) | |||
| np.testing.assert_equal(y_test_2[:, :, :, 6:-1], test_arr_2) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pad_3d_pad(): | |||
| # Confirm correct 3d padding - row, column, channel | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32) | |||
| test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2)) # padding 3 dims now | |||
| pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings) | |||
| x_test = Tensor(np.array(test_arr), dtype=mindspore.float32) | |||
| y_test = pad_op_3d(x_test).asnumpy() | |||
| assert y_test.shape == (5, 6, 31, 32) | |||
| np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2]) | |||
| # For testing backprop | |||
| class Grad(nn.Cell): | |||
| def __init__(self, network): | |||
| super(Grad, self).__init__() | |||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||
| self.network = network | |||
| def construct(self, input_, output_grad): | |||
| return self.grad(self.network)(input_, output_grad) | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.pad = nn.Pad(mode="CONSTANT", paddings=( | |||
| (0, 0), (4, 3), (1, 1), (0, 2))) | |||
| def construct(self, x): | |||
| return self.pad(x) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pad_3d_backprop(): | |||
| # Confirm correct 3d padding backprop | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32) | |||
| x_test = Tensor(test_arr, dtype=mindspore.float32) | |||
| padded_shape = (5, 10, 32, 32) | |||
| dy = np.random.randn(*padded_shape).astype(np.float32) | |||
| expected_dx = dy[:, 4:-3, 1:-1, :-2] | |||
| net = Grad(Net()) | |||
| dx = net(x_test, Tensor(dy)) | |||
| dx = dx[0].asnumpy() | |||
| np.testing.assert_array_equal(dx, expected_dx) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_pad_error_cases(): | |||
| # Test against common errorneous inputs to catch correctly | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| # TEST 1 - Neg padding values | |||
| test_op = nn.Pad(paddings=((0, 0), (-1, -1)), mode="CONSTANT") | |||
| test_arr = np.random.randn(3, 3) | |||
| test_arr_ms = Tensor(test_arr, dtype=mindspore.float32) | |||
| with pytest.raises(ValueError): | |||
| test_op(test_arr_ms) | |||
| # TEST 2 - Mismatched input size and paddings - 1D tensor | |||
| test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT") | |||
| test_arr = np.random.randn(3) # 1D Tensor | |||
| test_arr_ms = Tensor(test_arr, dtype=mindspore.float32) | |||
| with pytest.raises(ValueError): | |||
| test_op(test_arr_ms) | |||
| # TEST 3 - Mismatched input size and paddings - 2D tensor, 3D padding | |||
| test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT") # 2D Padding | |||
| test_arr = np.random.randn(1, 3, 3) # 3D Tensor | |||
| test_arr_ms = Tensor(test_arr, dtype=mindspore.float32) | |||
| with pytest.raises(ValueError): | |||
| test_op(test_arr_ms) | |||
| # TEST 4 - 1D Paddings should not work | |||
| with pytest.raises(TypeError): | |||
| test_op = nn.Pad(paddings=((0, 2)), mode="CONSTANT") | |||
| # TEST 5 - Padding beyond 4d - (added check in nn file in PR) | |||
| with pytest.raises(ValueError): | |||
| _ = nn.Pad(paddings=((0, 0), (0, 0,), (0, 0), (0, 0), | |||
| (1, 0)), mode="CONSTANT") # 2D Padding | |||