|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- Functional Cells used in Bert finetune and evaluation.
- """
-
- import os
- import math
- import numpy as np
- import mindspore.nn as nn
- from mindspore import log as logger
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.ops import composite as C
- from mindspore.common.tensor import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.train.callback import Callback
- from mindspore.nn.learning_rate_schedule import LearningRateSchedule, PolynomialDecayLR, WarmUpLR
-
-
- get_square_sum = C.MultitypeFuncGraph("get_square_sum")
- @get_square_sum.register("Tensor")
- def _get_square_sum(grad):
- norm = P.ReduceSum(False)(F.square(grad), ())
- norm = F.expand_dims(F.cast(norm, mstype.float32), 0)
- return norm
-
-
- apply_global_norm = C.MultitypeFuncGraph("apply_global_norm")
- @apply_global_norm.register("Tensor", "Tensor", "Tensor")
- def _apply_global_norm(clip_norm, global_norm, grad):
- grad = grad * clip_norm / global_norm
- return grad
-
-
- class GlobalNorm(nn.Cell):
- """
- Calculate the global norm value of given tensors
- """
- def __init__(self):
- super(GlobalNorm, self).__init__()
- self.norm = nn.Norm()
- self.hyper_map = C.HyperMap()
-
- def construct(self, grads):
- square_sum = self.hyper_map(get_square_sum, grads)
- global_norms = F.sqrt(F.addn(square_sum) / F.scalar_to_array(len(square_sum)))
- return global_norms
-
-
- class ClipByGlobalNorm(nn.Cell):
- """
- Clip grads by global norm
- """
- def __init__(self, clip_norm=1.0):
- super(ClipByGlobalNorm, self).__init__()
- self.global_norm = GlobalNorm()
- self.clip_norm = Tensor([clip_norm], mstype.float32)
- self.hyper_map = C.HyperMap()
-
- def construct(self, grads):
- global_norm = self.global_norm(grads)
- cond = P.GreaterEqual()(global_norm, self.clip_norm)
- global_norm = F.select(cond, global_norm, self.clip_norm)
- grads = self.hyper_map(F.partial(apply_global_norm, self.clip_norm, global_norm), grads)
- return grads
-
-
- class CrossEntropyCalculation(nn.Cell):
- """
- Cross Entropy loss
- """
- def __init__(self, is_training=True):
- super(CrossEntropyCalculation, self).__init__()
- self.onehot = P.OneHot()
- self.on_value = Tensor(1.0, mstype.float32)
- self.off_value = Tensor(0.0, mstype.float32)
- self.reduce_sum = P.ReduceSum()
- self.reduce_mean = P.ReduceMean()
- self.reshape = P.Reshape()
- self.last_idx = (-1,)
- self.neg = P.Neg()
- self.cast = P.Cast()
- self.is_training = is_training
-
- def construct(self, logits, label_ids, num_labels):
- if self.is_training:
- label_ids = self.reshape(label_ids, self.last_idx)
- one_hot_labels = self.onehot(label_ids, num_labels, self.on_value, self.off_value)
- per_example_loss = self.neg(self.reduce_sum(one_hot_labels * logits, self.last_idx))
- loss = self.reduce_mean(per_example_loss, self.last_idx)
- return_value = self.cast(loss, mstype.float32)
- else:
- return_value = logits * 1.0
- return return_value
-
-
- def make_directory(path: str):
- """Make directory."""
- if path is None or not isinstance(path, str) or path.strip() == "":
- logger.error("The path(%r) is invalid type.", path)
- raise TypeError("Input path is invaild type")
-
- # convert the relative paths
- path = os.path.realpath(path)
- logger.debug("The abs path is %r", path)
-
- # check the path is exist and write permissions?
- if os.path.exists(path):
- real_path = path
- else:
- # All exceptions need to be caught because create directory maybe have some limit(permissions)
- logger.debug("The directory(%s) doesn't exist, will create it", path)
- try:
- os.makedirs(path, exist_ok=True)
- real_path = path
- except PermissionError as e:
- logger.error("No write permission on the directory(%r), error = %r", path, e)
- raise TypeError("No write permission on the directory.")
- return real_path
-
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
- If the loss in NAN or INF terminating training.
- Note:
- if per_print_times is 0 do not print loss.
- Args:
- per_print_times (int): Print loss every times. Default: 1.
- """
- def __init__(self, dataset_size=1):
- super(LossCallBack, self).__init__()
- self._dataset_size = dataset_size
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- percent, epoch_num = math.modf(cb_params.cur_step_num / self._dataset_size)
- print("epoch: {}, current epoch percent: {}, step: {}, outputs are {}"
- .format(epoch_num, "%.3f" % percent, cb_params.cur_step_num, str(cb_params.net_outputs)))
-
- def LoadNewestCkpt(load_finetune_checkpoint_dir, steps_per_epoch, epoch_num, prefix):
- """
- Find the ckpt finetune generated and load it into eval network.
- """
- files = os.listdir(load_finetune_checkpoint_dir)
- pre_len = len(prefix)
- max_num = 0
- for filename in files:
- name_ext = os.path.splitext(filename)
- if name_ext[-1] != ".ckpt":
- continue
- #steps_per_epoch = ds.get_dataset_size()
- if filename.find(prefix) == 0 and not filename[pre_len].isalpha():
- index = filename[pre_len:].find("-")
- if index == 0 and max_num == 0:
- load_finetune_checkpoint_path = os.path.join(load_finetune_checkpoint_dir, filename)
- elif index not in (0, -1):
- name_split = name_ext[-2].split('_')
- if (steps_per_epoch != int(name_split[len(name_split)-1])) \
- or (epoch_num != int(filename[pre_len + index + 1:pre_len + index + 2])):
- continue
- num = filename[pre_len + 1:pre_len + index]
- if int(num) > max_num:
- max_num = int(num)
- load_finetune_checkpoint_path = os.path.join(load_finetune_checkpoint_dir, filename)
- return load_finetune_checkpoint_path
-
-
- class BertLearningRate(LearningRateSchedule):
- """
- Warmup-decay learning rate for Bert network.
- """
- def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
- super(BertLearningRate, self).__init__()
- self.warmup_flag = False
- if warmup_steps > 0:
- self.warmup_flag = True
- self.warmup_lr = WarmUpLR(learning_rate, warmup_steps)
- self.decay_lr = PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
- self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
-
- self.greater = P.Greater()
- self.one = Tensor(np.array([1.0]).astype(np.float32))
- self.cast = P.Cast()
-
- def construct(self, global_step):
- decay_lr = self.decay_lr(global_step)
- if self.warmup_flag:
- is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
- warmup_lr = self.warmup_lr(global_step)
- lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
- else:
- lr = decay_lr
- return lr
|