You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """YoloV3 train."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. from mindspore.context import ParallelMode
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore import Tensor
  23. import mindspore.nn as nn
  24. from mindspore import context
  25. from mindspore.communication.management import init, get_rank, get_group_size
  26. from mindspore.train.callback import ModelCheckpoint, RunContext
  27. from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
  28. import mindspore as ms
  29. from mindspore import amp
  30. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  31. from mindspore.common import set_seed
  32. from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
  33. from src.logger import get_logger
  34. from src.util import AverageMeter, get_param_groups
  35. from src.lr_scheduler import get_lr
  36. from src.yolo_dataset import create_yolo_dataset
  37. from src.initializer import default_recurisive_init, load_yolov3_params
  38. from src.config import ConfigYOLOV3DarkNet53
  39. from src.util import keep_loss_fp32
  40. set_seed(1)
  41. class BuildTrainNetwork(nn.Cell):
  42. def __init__(self, network, criterion):
  43. super(BuildTrainNetwork, self).__init__()
  44. self.network = network
  45. self.criterion = criterion
  46. def construct(self, input_data, label):
  47. output = self.network(input_data)
  48. loss = self.criterion(output, label)
  49. return loss
  50. def parse_args():
  51. """Parse train arguments."""
  52. parser = argparse.ArgumentParser('mindspore coco training')
  53. # device related
  54. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  55. help='device where the code will be implemented. (Default: Ascend)')
  56. # dataset related
  57. parser.add_argument('--data_dir', type=str, help='Train dataset directory.')
  58. parser.add_argument('--per_batch_size', default=32, type=int, help='Batch size for Training. Default: 32.')
  59. # network related
  60. parser.add_argument('--pretrained_backbone', default='', type=str,
  61. help='The ckpt file of DarkNet53. Default: "".')
  62. parser.add_argument('--resume_yolov3', default='', type=str,
  63. help='The ckpt file of YOLOv3, which used to fine tune. Default: ""')
  64. # optimizer and lr related
  65. parser.add_argument('--lr_scheduler', default='exponential', type=str,
  66. help='Learning rate scheduler, options: exponential, cosine_annealing. Default: exponential')
  67. parser.add_argument('--lr', default=0.001, type=float, help='Learning rate. Default: 0.001')
  68. parser.add_argument('--lr_epochs', type=str, default='220,250',
  69. help='Epoch of changing of lr changing, split with ",". Default: 220,250')
  70. parser.add_argument('--lr_gamma', type=float, default=0.1,
  71. help='Decrease lr by a factor of exponential lr_scheduler. Default: 0.1')
  72. parser.add_argument('--eta_min', type=float, default=0., help='Eta_min in cosine_annealing scheduler. Default: 0')
  73. parser.add_argument('--T_max', type=int, default=320, help='T-max in cosine_annealing scheduler. Default: 320')
  74. parser.add_argument('--max_epoch', type=int, default=320, help='Max epoch num to train the model. Default: 320')
  75. parser.add_argument('--warmup_epochs', default=0, type=float, help='Warmup epochs. Default: 0')
  76. parser.add_argument('--weight_decay', type=float, default=0.0005, help='Weight decay factor. Default: 0.0005')
  77. parser.add_argument('--momentum', type=float, default=0.9, help='Momentum. Default: 0.9')
  78. # loss related
  79. parser.add_argument('--loss_scale', type=int, default=1024, help='Static loss scale. Default: 1024')
  80. parser.add_argument('--label_smooth', type=int, default=0, help='Whether to use label smooth in CE. Default:0')
  81. parser.add_argument('--label_smooth_factor', type=float, default=0.1,
  82. help='Smooth strength of original one-hot. Default: 0.1')
  83. # logging related
  84. parser.add_argument('--log_interval', type=int, default=100, help='Logging interval steps. Default: 100')
  85. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='Checkpoint save location. Default: outputs/')
  86. parser.add_argument('--ckpt_interval', type=int, default=None, help='Save checkpoint interval. Default: None')
  87. parser.add_argument('--is_save_on_master', type=int, default=1,
  88. help='Save ckpt on master or all rank, 1 for master, 0 for all ranks. Default: 1')
  89. # distributed related
  90. parser.add_argument('--is_distributed', type=int, default=1,
  91. help='Distribute train or not, 1 for yes, 0 for no. Default: 1')
  92. parser.add_argument('--rank', type=int, default=0, help='Local rank of distributed. Default: 0')
  93. parser.add_argument('--group_size', type=int, default=1, help='World size of device. Default: 1')
  94. # profiler init
  95. parser.add_argument('--need_profiler', type=int, default=0,
  96. help='Whether use profiler. 0 for no, 1 for yes. Default: 0')
  97. # reset default config
  98. parser.add_argument('--training_shape', type=str, default="", help='Fix training shape. Default: ""')
  99. parser.add_argument('--resize_rate', type=int, default=None,
  100. help='Resize rate for multi-scale training. Default: None')
  101. args, _ = parser.parse_known_args()
  102. if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.T_max:
  103. args.T_max = args.max_epoch
  104. args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
  105. args.data_root = os.path.join(args.data_dir, 'train2014')
  106. args.annFile = os.path.join(args.data_dir, 'annotations/instances_train2014.json')
  107. # init distributed
  108. if args.is_distributed:
  109. if args.device_target == "Ascend":
  110. init()
  111. else:
  112. init("nccl")
  113. args.rank = get_rank()
  114. args.group_size = get_group_size()
  115. # select for master rank save ckpt or all rank save, compatiable for model parallel
  116. args.rank_save_ckpt_flag = 0
  117. if args.is_save_on_master:
  118. if args.rank == 0:
  119. args.rank_save_ckpt_flag = 1
  120. else:
  121. args.rank_save_ckpt_flag = 1
  122. # logger
  123. args.outputs_dir = os.path.join(args.ckpt_path,
  124. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  125. args.logger = get_logger(args.outputs_dir, args.rank)
  126. args.logger.save_args(args)
  127. return args
  128. def conver_training_shape(args):
  129. training_shape = [int(args.training_shape), int(args.training_shape)]
  130. return training_shape
  131. def train():
  132. """Train function."""
  133. args = parse_args()
  134. devid = int(os.getenv('DEVICE_ID', '0'))
  135. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
  136. device_target=args.device_target, save_graphs=True, device_id=devid)
  137. if args.need_profiler:
  138. from mindspore.profiler.profiling import Profiler
  139. profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)
  140. loss_meter = AverageMeter('loss')
  141. context.reset_auto_parallel_context()
  142. parallel_mode = ParallelMode.STAND_ALONE
  143. degree = 1
  144. if args.is_distributed:
  145. parallel_mode = ParallelMode.DATA_PARALLEL
  146. degree = get_group_size()
  147. context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree)
  148. network = YOLOV3DarkNet53(is_training=True)
  149. # default is kaiming-normal
  150. default_recurisive_init(network)
  151. load_yolov3_params(args, network)
  152. network = YoloWithLossCell(network)
  153. args.logger.info('finish get network')
  154. config = ConfigYOLOV3DarkNet53()
  155. config.label_smooth = args.label_smooth
  156. config.label_smooth_factor = args.label_smooth_factor
  157. if args.training_shape:
  158. config.multi_scale = [conver_training_shape(args)]
  159. if args.resize_rate:
  160. config.resize_rate = args.resize_rate
  161. ds, data_size = create_yolo_dataset(image_dir=args.data_root, anno_path=args.annFile, is_training=True,
  162. batch_size=args.per_batch_size, max_epoch=args.max_epoch,
  163. device_num=args.group_size, rank=args.rank, config=config)
  164. args.logger.info('Finish loading dataset')
  165. args.steps_per_epoch = int(data_size / args.per_batch_size / args.group_size)
  166. if not args.ckpt_interval:
  167. args.ckpt_interval = args.steps_per_epoch
  168. lr = get_lr(args)
  169. opt = Momentum(params=get_param_groups(network),
  170. learning_rate=Tensor(lr),
  171. momentum=args.momentum,
  172. weight_decay=args.weight_decay,
  173. loss_scale=args.loss_scale)
  174. is_gpu = context.get_context("device_target") == "GPU"
  175. if is_gpu:
  176. loss_scale_value = 1.0
  177. loss_scale = FixedLossScaleManager(loss_scale_value, drop_overflow_update=False)
  178. network = amp.build_train_network(network, optimizer=opt, loss_scale_manager=loss_scale,
  179. level="O2", keep_batchnorm_fp32=True)
  180. keep_loss_fp32(network)
  181. else:
  182. network = TrainingWrapper(network, opt)
  183. network.set_train()
  184. if args.rank_save_ckpt_flag:
  185. # checkpoint save
  186. ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
  187. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
  188. keep_checkpoint_max=ckpt_max_num)
  189. save_ckpt_path = os.path.join(args.outputs_dir, 'ckpt_' + str(args.rank) + '/')
  190. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  191. directory=save_ckpt_path,
  192. prefix='{}'.format(args.rank))
  193. cb_params = _InternalCallbackParam()
  194. cb_params.train_network = network
  195. cb_params.epoch_num = ckpt_max_num
  196. cb_params.cur_epoch_num = 1
  197. run_context = RunContext(cb_params)
  198. ckpt_cb.begin(run_context)
  199. old_progress = -1
  200. t_end = time.time()
  201. data_loader = ds.create_dict_iterator(output_numpy=True)
  202. for i, data in enumerate(data_loader):
  203. images = data["image"]
  204. input_shape = images.shape[2:4]
  205. args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
  206. images = Tensor.from_numpy(images)
  207. batch_y_true_0 = Tensor.from_numpy(data['bbox1'])
  208. batch_y_true_1 = Tensor.from_numpy(data['bbox2'])
  209. batch_y_true_2 = Tensor.from_numpy(data['bbox3'])
  210. batch_gt_box0 = Tensor.from_numpy(data['gt_box1'])
  211. batch_gt_box1 = Tensor.from_numpy(data['gt_box2'])
  212. batch_gt_box2 = Tensor.from_numpy(data['gt_box3'])
  213. input_shape = Tensor(tuple(input_shape[::-1]), ms.float32)
  214. loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,
  215. batch_gt_box2, input_shape)
  216. loss_meter.update(loss.asnumpy())
  217. if args.rank_save_ckpt_flag:
  218. # ckpt progress
  219. cb_params.cur_step_num = i + 1 # current step number
  220. cb_params.batch_num = i + 2
  221. ckpt_cb.step_end(run_context)
  222. if i % args.log_interval == 0:
  223. time_used = time.time() - t_end
  224. epoch = int(i / args.steps_per_epoch)
  225. fps = args.per_batch_size * (i - old_progress) * args.group_size / time_used
  226. if args.rank == 0:
  227. args.logger.info(
  228. 'epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr:{}'.format(epoch, i, loss_meter, fps, lr[i]))
  229. t_end = time.time()
  230. loss_meter.reset()
  231. old_progress = i
  232. if (i + 1) % args.steps_per_epoch == 0 and args.rank_save_ckpt_flag:
  233. cb_params.cur_epoch_num += 1
  234. if args.need_profiler:
  235. if i == 10:
  236. profiler.analyse()
  237. break
  238. args.logger.info('==========end training===============')
  239. if __name__ == "__main__":
  240. train()