You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

loss.py 2.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """define loss function for network."""
  16. from mindspore.nn.loss.loss import _Loss
  17. from mindspore.ops import operations as P
  18. from mindspore.ops import functional as F
  19. from mindspore import Tensor
  20. from mindspore.common import dtype as mstype
  21. import mindspore.nn as nn
  22. class CrossEntropy(_Loss):
  23. """the redefined loss function with SoftmaxCrossEntropyWithLogits"""
  24. def __init__(self, smooth_factor=0, num_classes=1000, factor=0.4):
  25. super(CrossEntropy, self).__init__()
  26. self.factor = factor
  27. self.onehot = P.OneHot()
  28. self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
  29. self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
  30. self.ce = nn.SoftmaxCrossEntropyWithLogits()
  31. self.mean = P.ReduceMean(False)
  32. def construct(self, logits, label):
  33. logit, aux = logits
  34. one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
  35. loss_logit = self.ce(logit, one_hot_label)
  36. loss_logit = self.mean(loss_logit, 0)
  37. one_hot_label_aux = self.onehot(label, F.shape(aux)[1], self.on_value, self.off_value)
  38. loss_aux = self.ce(aux, one_hot_label_aux)
  39. loss_aux = self.mean(loss_aux, 0)
  40. return loss_logit + self.factor*loss_aux
  41. class CrossEntropy_Val(_Loss):
  42. """the redefined loss function with SoftmaxCrossEntropyWithLogits, will be used in inference process"""
  43. def __init__(self, smooth_factor=0, num_classes=1000):
  44. super(CrossEntropy_Val, self).__init__()
  45. self.onehot = P.OneHot()
  46. self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
  47. self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
  48. self.ce = nn.SoftmaxCrossEntropyWithLogits()
  49. self.mean = P.ReduceMean(False)
  50. def construct(self, logits, label):
  51. one_hot_label = self.onehot(label, F.shape(logits)[1], self.on_value, self.off_value)
  52. loss_logit = self.ce(logits, one_hot_label)
  53. loss_logit = self.mean(loss_logit, 0)
  54. return loss_logit