# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """define loss function for network.""" from mindspore.nn.loss.loss import _Loss from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore import Tensor from mindspore.common import dtype as mstype import mindspore.nn as nn class CrossEntropy(_Loss): """the redefined loss function with SoftmaxCrossEntropyWithLogits""" def __init__(self, smooth_factor=0, num_classes=1000, factor=0.4): super(CrossEntropy, self).__init__() self.factor = factor self.onehot = P.OneHot() self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean(False) def construct(self, logits, label): logit, aux = logits one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) loss_logit = self.ce(logit, one_hot_label) loss_logit = self.mean(loss_logit, 0) one_hot_label_aux = self.onehot(label, F.shape(aux)[1], self.on_value, self.off_value) loss_aux = self.ce(aux, one_hot_label_aux) loss_aux = self.mean(loss_aux, 0) return loss_logit + self.factor*loss_aux class CrossEntropy_Val(_Loss): """the redefined loss function with SoftmaxCrossEntropyWithLogits, will be used in inference process""" def __init__(self, smooth_factor=0, num_classes=1000): super(CrossEntropy_Val, self).__init__() self.onehot = P.OneHot() self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean(False) def construct(self, logits, label): one_hot_label = self.onehot(label, F.shape(logits)[1], self.on_value, self.off_value) loss_logit = self.ce(logits, one_hot_label) loss_logit = self.mean(loss_logit, 0) return loss_logit