|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031 |
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <fstream>
- #include <iostream>
- #include <memory>
- #include <vector>
- #include <string>
-
- #include "utils/log_adapter.h"
- #include "common/utils.h"
- #include "common/common.h"
- #include "gtest/gtest.h"
- #include "securec.h"
- #include "minddata/dataset/include/datasets.h"
- #include "minddata/dataset/include/status.h"
- #include "minddata/dataset/include/transforms.h"
- #include "minddata/dataset/include/iterator.h"
- #include "minddata/dataset/core/constants.h"
- #include "minddata/dataset/include/samplers.h"
-
- using namespace mindspore::dataset::api;
- using mindspore::MsLogLevel::ERROR;
- using mindspore::ExceptionType::NoExceptionType;
- using mindspore::LogStream;
- using mindspore::dataset::Tensor;
- using mindspore::dataset::Status;
- using mindspore::dataset::BorderType;
-
-
- class MindDataTestPipeline : public UT::DatasetOpTesting {
- protected:
- };
-
-
- TEST_F(MindDataTestPipeline, TestBatchAndRepeat) {
- // Create a Mnist Dataset
- std::string folder_path = datasets_root_path_ + "/testMnistData/";
- std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestMnistFail1) {
- // Create a Mnist Dataset
- std::shared_ptr<Dataset> ds = Mnist("", RandomSampler(false, 10));
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestTensorOpsAndMap) {
- // Create a Mnist Dataset
- std::string folder_path = datasets_root_path_ + "/testMnistData/";
- std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30});
- EXPECT_NE(resize_op, nullptr);
-
- std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16});
- EXPECT_NE(center_crop_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({resize_op, center_crop_op});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 40);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestUniformAugWithOps) {
- // Create a Mnist Dataset
- std::string folder_path = datasets_root_path_ + "/testMnistData/";
- std::shared_ptr<Dataset> ds = Mnist(folder_path, RandomSampler(false, 20));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 1;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> resize_op = vision::Resize({30, 30});
- EXPECT_NE(resize_op, nullptr);
-
- std::shared_ptr<TensorOperation> random_crop_op = vision::RandomCrop({28, 28});
- EXPECT_NE(random_crop_op, nullptr);
-
- std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop({16, 16});
- EXPECT_NE(center_crop_op, nullptr);
-
- std::shared_ptr<TensorOperation> uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2);
- EXPECT_NE(uniform_aug_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({resize_op, uniform_aug_op});
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestRandomFlip) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
- EXPECT_NE(random_vertical_flip_op, nullptr);
-
- std::shared_ptr<TensorOperation> random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5);
- EXPECT_NE(random_horizontal_flip_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestImageFolderBatchAndRepeat) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestImageFolderFail1) {
- // Create an ImageFolder Dataset
- std::shared_ptr<Dataset> ds = ImageFolder("", true, nullptr);
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) {
- std::shared_ptr<SamplerObj> sampl = DistributedSampler(2, 1);
- EXPECT_NE(sampl, nullptr);
-
- sampl = PKSampler(3);
- EXPECT_NE(sampl, nullptr);
-
- sampl = RandomSampler(false, 12);
- EXPECT_NE(sampl, nullptr);
-
- sampl = SequentialSampler(0, 12);
- EXPECT_NE(sampl, nullptr);
-
- std::vector<double> weights = {0.9, 0.8, 0.68, 0.7, 0.71, 0.6, 0.5, 0.4, 0.3, 0.5, 0.2, 0.1};
- sampl = WeightedRandomSampler(weights, 12);
- EXPECT_NE(sampl, nullptr);
-
- std::vector<int64_t> indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23};
- sampl = SubsetRandomSampler(indices);
- EXPECT_NE(sampl, nullptr);
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampl);
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 12);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestPad) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric);
- EXPECT_NE(pad_op1, nullptr);
-
- std::shared_ptr<TensorOperation> pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge);
- EXPECT_NE(pad_op2, nullptr);
-
- std::shared_ptr<TensorOperation> pad_op3 = vision::Pad({1, 4});
- EXPECT_NE(pad_op3, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({pad_op1, pad_op2, pad_op3});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestCutOut) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> cut_out1 = vision::CutOut(30, 5);
- EXPECT_NE(cut_out1, nullptr);
-
- std::shared_ptr<TensorOperation> cut_out2 = vision::CutOut(30);
- EXPECT_NE(cut_out2, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({cut_out1, cut_out2});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestNormalize) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> normalize = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0});
- EXPECT_NE(normalize, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({normalize});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestDecode) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> decode = vision::Decode(true);
- EXPECT_NE(decode, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({decode});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestShuffleDataset) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Shuffle operation on ds
- int32_t shuffle_size = 10;
- ds = ds->Shuffle(shuffle_size);
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 2;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestSkipDataset) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDataset.";
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Skip operation on ds
- int32_t count = 3;
- ds = ds->Skip(count);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
- MS_LOG(INFO) << "Number of rows: " << i;
-
- // Expect 10-3=7 rows
- EXPECT_EQ(i, 7);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestSkipDatasetError1) {
- MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDatasetError1.";
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Skip operation on ds with invalid count input
- int32_t count = -1;
- ds = ds->Skip(count);
- // Expect nullptr for invalid input skip_count
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestCifar10Dataset) {
-
- // Create a Cifar10 Dataset
- std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
- std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- EXPECT_NE(row.find("image"), row.end());
- EXPECT_NE(row.find("label"), row.end());
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestCifar10DatasetFail1) {
-
- // Create a Cifar10 Dataset
- std::shared_ptr<Dataset> ds = Cifar10("", RandomSampler(false, 10));
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestCifar100Dataset) {
-
- // Create a Cifar100 Dataset
- std::string folder_path = datasets_root_path_ + "/testCifar100Data/";
- std::shared_ptr<Dataset> ds = Cifar100(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- EXPECT_NE(row.find("image"), row.end());
- EXPECT_NE(row.find("coarse_label"), row.end());
- EXPECT_NE(row.find("fine_label"), row.end());
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestCifar100DatasetFail1) {
-
- // Create a Cifar100 Dataset
- std::shared_ptr<Dataset> ds = Cifar100("", RandomSampler(false, 10));
- EXPECT_EQ(ds, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestRandomColorAdjust) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_color_adjust1 = vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5});
- EXPECT_NE(random_color_adjust1, nullptr);
-
- std::shared_ptr<TensorOperation> random_color_adjust2 = vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5},
- {0.5, 0.5});
- EXPECT_NE(random_color_adjust2, nullptr);
-
- std::shared_ptr<TensorOperation> random_color_adjust3 = vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5},
- {0.25, 0.5});
- EXPECT_NE(random_color_adjust3, nullptr);
-
- std::shared_ptr<TensorOperation> random_color_adjust4 = vision::RandomColorAdjust();
- EXPECT_NE(random_color_adjust4, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestRandomRotation) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_rotation_op = vision::RandomRotation({-180, 180});
- EXPECT_NE(random_rotation_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_rotation_op});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestProjectMap) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create objects for the tensor ops
- std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
- EXPECT_NE(random_vertical_flip_op, nullptr);
-
- // Create a Map operation on ds
- ds = ds->Map({random_vertical_flip_op}, {}, {}, {"image", "label"});
- EXPECT_NE(ds, nullptr);
-
- // Create a Project operation on ds
- std::vector<std::string> column_project = {"image"};
- ds = ds->Project(column_project);
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestZipSuccess) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Project operation on ds
- std::vector<std::string> column_project = {"image"};
- ds = ds->Project(column_project);
- EXPECT_NE(ds, nullptr);
-
- // Create an ImageFolder Dataset
- std::shared_ptr<Dataset> ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds1, nullptr);
-
- // Create a Rename operation on ds (so that the 3 datasets we are going to zip have distinct column names)
- ds1 = ds1->Rename({"image", "label"}, {"col1", "col2"});
- EXPECT_NE(ds1, nullptr);
-
- folder_path = datasets_root_path_ + "/testCifar10Data/";
- std::shared_ptr<Dataset> ds2 = Cifar10(folder_path, RandomSampler(false, 10));
- EXPECT_NE(ds2, nullptr);
-
- // Create a Project operation on ds
- column_project = {"label"};
- ds2 = ds2->Project(column_project);
- EXPECT_NE(ds2, nullptr);
-
- // Create a Zip operation on the datasets
- ds = ds->Zip({ds, ds1, ds2});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- while (row.size() != 0) {
- i++;
- auto image = row["image"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 10);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestZipFail) {
- // We expect this test to fail because we are the both datasets we are zipping have "image" and "label" columns
- // and zip doesn't accept datasets with same column names
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create an ImageFolder Dataset
- std::shared_ptr<Dataset> ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds1, nullptr);
-
- // Create a Zip operation on the datasets
- ds = ds->Zip({ds, ds1});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_EQ(iter, nullptr);
- }
-
- TEST_F(MindDataTestPipeline, TestRenameSuccess) {
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Rename operation on ds
- ds = ds->Rename({"image", "label"}, {"col1", "col2"});
- EXPECT_NE(ds, nullptr);
-
- // Create a Batch operation on ds
- int32_t batch_size = 1;
- ds = ds->Batch(batch_size);
- EXPECT_NE(ds, nullptr);
-
- // Create an iterator over the result of the above dataset
- // This will trigger the creation of the Execution Tree and launch it.
- std::shared_ptr<Iterator> iter = ds->CreateIterator();
- EXPECT_NE(iter, nullptr);
-
- // Iterate the dataset and get each row
- std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
- iter->GetNextRow(&row);
-
- uint64_t i = 0;
- EXPECT_NE(row.find("col1"), row.end());
- EXPECT_NE(row.find("col2"), row.end());
- EXPECT_EQ(row.find("image"), row.end());
- EXPECT_EQ(row.find("label"), row.end());
-
- while (row.size() != 0) {
- i++;
- auto image = row["col1"];
- MS_LOG(INFO) << "Tensor image shape: " << image->shape();
- iter->GetNextRow(&row);
- }
-
- EXPECT_EQ(i, 20);
-
- // Manually terminate the pipeline
- iter->Stop();
- }
-
- TEST_F(MindDataTestPipeline, TestRenameFail) {
- // We expect this test to fail because input and output in Rename are not the same size
-
- // Create an ImageFolder Dataset
- std::string folder_path = datasets_root_path_ + "/testPK/data/";
- std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, RandomSampler(false, 10));
- EXPECT_NE(ds, nullptr);
-
- // Create a Repeat operation on ds
- int32_t repeat_num = 2;
- ds = ds->Repeat(repeat_num);
- EXPECT_NE(ds, nullptr);
-
- // Create a Rename operation on ds
- ds = ds->Rename({"image", "label"}, {"col2"});
- EXPECT_EQ(ds, nullptr);
- }
|