/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "utils/log_adapter.h" #include "common/utils.h" #include "common/common.h" #include "gtest/gtest.h" #include "securec.h" #include "minddata/dataset/include/datasets.h" #include "minddata/dataset/include/status.h" #include "minddata/dataset/include/transforms.h" #include "minddata/dataset/include/iterator.h" #include "minddata/dataset/core/constants.h" #include "minddata/dataset/include/samplers.h" using namespace mindspore::dataset::api; using mindspore::MsLogLevel::ERROR; using mindspore::ExceptionType::NoExceptionType; using mindspore::LogStream; using mindspore::dataset::Tensor; using mindspore::dataset::Status; using mindspore::dataset::BorderType; class MindDataTestPipeline : public UT::DatasetOpTesting { protected: }; TEST_F(MindDataTestPipeline, TestBatchAndRepeat) { // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestMnistFail1) { // Create a Mnist Dataset std::shared_ptr ds = Mnist("", RandomSampler(false, 10)); EXPECT_EQ(ds, nullptr); } TEST_F(MindDataTestPipeline, TestTensorOpsAndMap) { // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, RandomSampler(false, 20)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr resize_op = vision::Resize({30, 30}); EXPECT_NE(resize_op, nullptr); std::shared_ptr center_crop_op = vision::CenterCrop({16, 16}); EXPECT_NE(center_crop_op, nullptr); // Create a Map operation on ds ds = ds->Map({resize_op, center_crop_op}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 40); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestUniformAugWithOps) { // Create a Mnist Dataset std::string folder_path = datasets_root_path_ + "/testMnistData/"; std::shared_ptr ds = Mnist(folder_path, RandomSampler(false, 20)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 1; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr resize_op = vision::Resize({30, 30}); EXPECT_NE(resize_op, nullptr); std::shared_ptr random_crop_op = vision::RandomCrop({28, 28}); EXPECT_NE(random_crop_op, nullptr); std::shared_ptr center_crop_op = vision::CenterCrop({16, 16}); EXPECT_NE(center_crop_op, nullptr); std::shared_ptr uniform_aug_op = vision::UniformAugment({random_crop_op, center_crop_op}, 2); EXPECT_NE(uniform_aug_op, nullptr); // Create a Map operation on ds ds = ds->Map({resize_op, uniform_aug_op}); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomFlip) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.5); EXPECT_NE(random_vertical_flip_op, nullptr); std::shared_ptr random_horizontal_flip_op = vision::RandomHorizontalFlip(0.5); EXPECT_NE(random_horizontal_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op, random_horizontal_flip_op}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestImageFolderBatchAndRepeat) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestImageFolderFail1) { // Create an ImageFolder Dataset std::shared_ptr ds = ImageFolder("", true, nullptr); EXPECT_EQ(ds, nullptr); } TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) { std::shared_ptr sampl = DistributedSampler(2, 1); EXPECT_NE(sampl, nullptr); sampl = PKSampler(3); EXPECT_NE(sampl, nullptr); sampl = RandomSampler(false, 12); EXPECT_NE(sampl, nullptr); sampl = SequentialSampler(0, 12); EXPECT_NE(sampl, nullptr); std::vector weights = {0.9, 0.8, 0.68, 0.7, 0.71, 0.6, 0.5, 0.4, 0.3, 0.5, 0.2, 0.1}; sampl = WeightedRandomSampler(weights, 12); EXPECT_NE(sampl, nullptr); std::vector indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}; sampl = SubsetRandomSampler(indices); EXPECT_NE(sampl, nullptr); // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, sampl); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 12); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestPad) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr pad_op1 = vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric); EXPECT_NE(pad_op1, nullptr); std::shared_ptr pad_op2 = vision::Pad({1}, {1, 1, 1}, BorderType::kEdge); EXPECT_NE(pad_op2, nullptr); std::shared_ptr pad_op3 = vision::Pad({1, 4}); EXPECT_NE(pad_op3, nullptr); // Create a Map operation on ds ds = ds->Map({pad_op1, pad_op2, pad_op3}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCutOut) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr cut_out1 = vision::CutOut(30, 5); EXPECT_NE(cut_out1, nullptr); std::shared_ptr cut_out2 = vision::CutOut(30); EXPECT_NE(cut_out2, nullptr); // Create a Map operation on ds ds = ds->Map({cut_out1, cut_out2}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestNormalize) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr normalize = vision::Normalize({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}); EXPECT_NE(normalize, nullptr); // Create a Map operation on ds ds = ds->Map({normalize}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestDecode) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, false, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr decode = vision::Decode(true); EXPECT_NE(decode, nullptr); // Create a Map operation on ds ds = ds->Map({decode}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestShuffleDataset) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Shuffle operation on ds int32_t shuffle_size = 10; ds = ds->Shuffle(shuffle_size); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 2; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSkipDataset) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDataset."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Skip operation on ds int32_t count = 3; ds = ds->Skip(count); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } MS_LOG(INFO) << "Number of rows: " << i; // Expect 10-3=7 rows EXPECT_EQ(i, 7); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestSkipDatasetError1) { MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSkipDatasetError1."; // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Skip operation on ds with invalid count input int32_t count = -1; ds = ds->Skip(count); // Expect nullptr for invalid input skip_count EXPECT_EQ(ds, nullptr); } TEST_F(MindDataTestPipeline, TestCifar10Dataset) { // Create a Cifar10 Dataset std::string folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds = Cifar10(folder_path, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); EXPECT_NE(row.find("image"), row.end()); EXPECT_NE(row.find("label"), row.end()); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCifar10DatasetFail1) { // Create a Cifar10 Dataset std::shared_ptr ds = Cifar10("", RandomSampler(false, 10)); EXPECT_EQ(ds, nullptr); } TEST_F(MindDataTestPipeline, TestCifar100Dataset) { // Create a Cifar100 Dataset std::string folder_path = datasets_root_path_ + "/testCifar100Data/"; std::shared_ptr ds = Cifar100(folder_path, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); EXPECT_NE(row.find("image"), row.end()); EXPECT_NE(row.find("coarse_label"), row.end()); EXPECT_NE(row.find("fine_label"), row.end()); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestCifar100DatasetFail1) { // Create a Cifar100 Dataset std::shared_ptr ds = Cifar100("", RandomSampler(false, 10)); EXPECT_EQ(ds, nullptr); } TEST_F(MindDataTestPipeline, TestRandomColorAdjust) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_color_adjust1 = vision::RandomColorAdjust({1.0}, {0.0}, {0.5}, {0.5}); EXPECT_NE(random_color_adjust1, nullptr); std::shared_ptr random_color_adjust2 = vision::RandomColorAdjust({1.0, 1.0}, {0.0, 0.0}, {0.5, 0.5}, {0.5, 0.5}); EXPECT_NE(random_color_adjust2, nullptr); std::shared_ptr random_color_adjust3 = vision::RandomColorAdjust({0.5, 1.0}, {0.0, 0.5}, {0.25, 0.5}, {0.25, 0.5}); EXPECT_NE(random_color_adjust3, nullptr); std::shared_ptr random_color_adjust4 = vision::RandomColorAdjust(); EXPECT_NE(random_color_adjust4, nullptr); // Create a Map operation on ds ds = ds->Map({random_color_adjust1, random_color_adjust2, random_color_adjust3, random_color_adjust4}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRandomRotation) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_rotation_op = vision::RandomRotation({-180, 180}); EXPECT_NE(random_rotation_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_rotation_op}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestProjectMap) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create objects for the tensor ops std::shared_ptr random_vertical_flip_op = vision::RandomVerticalFlip(0.5); EXPECT_NE(random_vertical_flip_op, nullptr); // Create a Map operation on ds ds = ds->Map({random_vertical_flip_op}, {}, {}, {"image", "label"}); EXPECT_NE(ds, nullptr); // Create a Project operation on ds std::vector column_project = {"image"}; ds = ds->Project(column_project); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestZipSuccess) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Project operation on ds std::vector column_project = {"image"}; ds = ds->Project(column_project); EXPECT_NE(ds, nullptr); // Create an ImageFolder Dataset std::shared_ptr ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds1, nullptr); // Create a Rename operation on ds (so that the 3 datasets we are going to zip have distinct column names) ds1 = ds1->Rename({"image", "label"}, {"col1", "col2"}); EXPECT_NE(ds1, nullptr); folder_path = datasets_root_path_ + "/testCifar10Data/"; std::shared_ptr ds2 = Cifar10(folder_path, RandomSampler(false, 10)); EXPECT_NE(ds2, nullptr); // Create a Project operation on ds column_project = {"label"}; ds2 = ds2->Project(column_project); EXPECT_NE(ds2, nullptr); // Create a Zip operation on the datasets ds = ds->Zip({ds, ds1, ds2}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; while (row.size() != 0) { i++; auto image = row["image"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 10); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestZipFail) { // We expect this test to fail because we are the both datasets we are zipping have "image" and "label" columns // and zip doesn't accept datasets with same column names // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create an ImageFolder Dataset std::shared_ptr ds1 = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds1, nullptr); // Create a Zip operation on the datasets ds = ds->Zip({ds, ds1}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_EQ(iter, nullptr); } TEST_F(MindDataTestPipeline, TestRenameSuccess) { // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create a Rename operation on ds ds = ds->Rename({"image", "label"}, {"col1", "col2"}); EXPECT_NE(ds, nullptr); // Create a Batch operation on ds int32_t batch_size = 1; ds = ds->Batch(batch_size); EXPECT_NE(ds, nullptr); // Create an iterator over the result of the above dataset // This will trigger the creation of the Execution Tree and launch it. std::shared_ptr iter = ds->CreateIterator(); EXPECT_NE(iter, nullptr); // Iterate the dataset and get each row std::unordered_map> row; iter->GetNextRow(&row); uint64_t i = 0; EXPECT_NE(row.find("col1"), row.end()); EXPECT_NE(row.find("col2"), row.end()); EXPECT_EQ(row.find("image"), row.end()); EXPECT_EQ(row.find("label"), row.end()); while (row.size() != 0) { i++; auto image = row["col1"]; MS_LOG(INFO) << "Tensor image shape: " << image->shape(); iter->GetNextRow(&row); } EXPECT_EQ(i, 20); // Manually terminate the pipeline iter->Stop(); } TEST_F(MindDataTestPipeline, TestRenameFail) { // We expect this test to fail because input and output in Rename are not the same size // Create an ImageFolder Dataset std::string folder_path = datasets_root_path_ + "/testPK/data/"; std::shared_ptr ds = ImageFolder(folder_path, true, RandomSampler(false, 10)); EXPECT_NE(ds, nullptr); // Create a Repeat operation on ds int32_t repeat_num = 2; ds = ds->Repeat(repeat_num); EXPECT_NE(ds, nullptr); // Create a Rename operation on ds ds = ds->Rename({"image", "label"}, {"col2"}); EXPECT_EQ(ds, nullptr); }