You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_cast_op.py 1.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import pytest
  16. from mindspore.ops import operations as P
  17. from mindspore.nn import Cell
  18. from mindspore.common.tensor import Tensor
  19. import mindspore.common.dtype as mstype
  20. import mindspore.context as context
  21. import numpy as np
  22. class Net(Cell):
  23. def __init__(self):
  24. super(Net, self).__init__()
  25. self.Cast = P.Cast()
  26. def construct(self, x0, type0, x1, type1):
  27. output = (self.Cast(x0, type0),
  28. self.Cast(x1, type1))
  29. return output
  30. @pytest.mark.level0
  31. @pytest.mark.platform_x86_gpu_training
  32. @pytest.mark.env_onecard
  33. def test_cast():
  34. x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
  35. t0 = mstype.float16
  36. x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
  37. t1 = mstype.float32
  38. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  39. net = Net()
  40. output = net(x0, t0, x1, t1)
  41. type0 = output[0].asnumpy().dtype
  42. assert (type0 == 'float16')
  43. type1 = output[1].asnumpy().dtype
  44. assert (type1 == 'float32')