# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore.ops import operations as P from mindspore.nn import Cell from mindspore.common.tensor import Tensor import mindspore.common.dtype as mstype import mindspore.context as context import numpy as np class Net(Cell): def __init__(self): super(Net, self).__init__() self.Cast = P.Cast() def construct(self, x0, type0, x1, type1): output = (self.Cast(x0, type0), self.Cast(x1, type1)) return output @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_cast(): x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32)) t0 = mstype.float16 x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16)) t1 = mstype.float32 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') net = Net() output = net(x0, t0, x1, t1) type0 = output[0].asnumpy().dtype assert (type0 == 'float16') type1 = output[1].asnumpy().dtype assert (type1 == 'float32')