You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_equalize.py 9.9 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing Equalize op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.engine as de
  20. import mindspore.dataset.transforms.vision.c_transforms as C
  21. import mindspore.dataset.transforms.vision.py_transforms as F
  22. from mindspore import log as logger
  23. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5
  24. DATA_DIR = "../data/dataset/testImageNetData/train/"
  25. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  26. GENERATE_GOLDEN = False
  27. def test_equalize_py(plot=False):
  28. """
  29. Test Equalize py op
  30. """
  31. logger.info("Test Equalize")
  32. # Original Images
  33. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  34. transforms_original = F.ComposeOp([F.Decode(),
  35. F.Resize((224, 224)),
  36. F.ToTensor()])
  37. ds_original = ds.map(input_columns="image",
  38. operations=transforms_original())
  39. ds_original = ds_original.batch(512)
  40. for idx, (image, _) in enumerate(ds_original):
  41. if idx == 0:
  42. images_original = np.transpose(image, (0, 2, 3, 1))
  43. else:
  44. images_original = np.append(images_original,
  45. np.transpose(image, (0, 2, 3, 1)),
  46. axis=0)
  47. # Color Equalized Images
  48. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  49. transforms_equalize = F.ComposeOp([F.Decode(),
  50. F.Resize((224, 224)),
  51. F.Equalize(),
  52. F.ToTensor()])
  53. ds_equalize = ds.map(input_columns="image",
  54. operations=transforms_equalize())
  55. ds_equalize = ds_equalize.batch(512)
  56. for idx, (image, _) in enumerate(ds_equalize):
  57. if idx == 0:
  58. images_equalize = np.transpose(image, (0, 2, 3, 1))
  59. else:
  60. images_equalize = np.append(images_equalize,
  61. np.transpose(image, (0, 2, 3, 1)),
  62. axis=0)
  63. num_samples = images_original.shape[0]
  64. mse = np.zeros(num_samples)
  65. for i in range(num_samples):
  66. mse[i] = diff_mse(images_equalize[i], images_original[i])
  67. logger.info("MSE= {}".format(str(np.mean(mse))))
  68. if plot:
  69. visualize_list(images_original, images_equalize)
  70. def test_equalize_c(plot=False):
  71. """
  72. Test Equalize Cpp op
  73. """
  74. logger.info("Test Equalize cpp op")
  75. # Original Images
  76. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  77. transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
  78. ds_original = ds.map(input_columns="image",
  79. operations=transforms_original)
  80. ds_original = ds_original.batch(512)
  81. for idx, (image, _) in enumerate(ds_original):
  82. if idx == 0:
  83. images_original = image
  84. else:
  85. images_original = np.append(images_original,
  86. image,
  87. axis=0)
  88. # Equalize Images
  89. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  90. transform_equalize = [C.Decode(), C.Resize(size=[224, 224]),
  91. C.Equalize()]
  92. ds_equalize = ds.map(input_columns="image",
  93. operations=transform_equalize)
  94. ds_equalize = ds_equalize.batch(512)
  95. for idx, (image, _) in enumerate(ds_equalize):
  96. if idx == 0:
  97. images_equalize = image
  98. else:
  99. images_equalize = np.append(images_equalize,
  100. image,
  101. axis=0)
  102. if plot:
  103. visualize_list(images_original, images_equalize)
  104. num_samples = images_original.shape[0]
  105. mse = np.zeros(num_samples)
  106. for i in range(num_samples):
  107. mse[i] = diff_mse(images_equalize[i], images_original[i])
  108. logger.info("MSE= {}".format(str(np.mean(mse))))
  109. def test_equalize_py_c(plot=False):
  110. """
  111. Test Equalize Cpp op and python op
  112. """
  113. logger.info("Test Equalize cpp and python op")
  114. # equalize Images in cpp
  115. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  116. ds = ds.map(input_columns=["image"],
  117. operations=[C.Decode(), C.Resize((224, 224))])
  118. ds_c_equalize = ds.map(input_columns="image",
  119. operations=C.Equalize())
  120. ds_c_equalize = ds_c_equalize.batch(512)
  121. for idx, (image, _) in enumerate(ds_c_equalize):
  122. if idx == 0:
  123. images_c_equalize = image
  124. else:
  125. images_c_equalize = np.append(images_c_equalize,
  126. image,
  127. axis=0)
  128. # Equalize images in python
  129. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  130. ds = ds.map(input_columns=["image"],
  131. operations=[C.Decode(), C.Resize((224, 224))])
  132. transforms_p_equalize = F.ComposeOp([lambda img: img.astype(np.uint8),
  133. F.ToPIL(),
  134. F.Equalize(),
  135. np.array])
  136. ds_p_equalize = ds.map(input_columns="image",
  137. operations=transforms_p_equalize())
  138. ds_p_equalize = ds_p_equalize.batch(512)
  139. for idx, (image, _) in enumerate(ds_p_equalize):
  140. if idx == 0:
  141. images_p_equalize = image
  142. else:
  143. images_p_equalize = np.append(images_p_equalize,
  144. image,
  145. axis=0)
  146. num_samples = images_c_equalize.shape[0]
  147. mse = np.zeros(num_samples)
  148. for i in range(num_samples):
  149. mse[i] = diff_mse(images_p_equalize[i], images_c_equalize[i])
  150. logger.info("MSE= {}".format(str(np.mean(mse))))
  151. if plot:
  152. visualize_list(images_c_equalize, images_p_equalize, visualize_mode=2)
  153. def test_equalize_one_channel():
  154. """
  155. Test Equalize cpp op with one channel image
  156. """
  157. logger.info("Test Equalize C Op With One Channel Images")
  158. c_op = C.Equalize()
  159. try:
  160. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  161. ds = ds.map(input_columns=["image"],
  162. operations=[C.Decode(),
  163. C.Resize((224, 224)),
  164. lambda img: np.array(img[:, :, 0])])
  165. ds.map(input_columns="image",
  166. operations=c_op)
  167. except RuntimeError as e:
  168. logger.info("Got an exception in DE: {}".format(str(e)))
  169. assert "The shape" in str(e)
  170. def test_equalize_mnist_c(plot=False):
  171. """
  172. Test Equalize C op with MNIST dataset (Grayscale images)
  173. """
  174. logger.info("Test Equalize C Op With MNIST Images")
  175. ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  176. ds_equalize_c = ds.map(input_columns="image",
  177. operations=C.Equalize())
  178. ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  179. images = []
  180. images_trans = []
  181. labels = []
  182. for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_equalize_c)):
  183. image_orig, label_orig = data_orig
  184. image_trans, _ = data_trans
  185. images.append(image_orig)
  186. labels.append(label_orig)
  187. images_trans.append(image_trans)
  188. # Compare with expected md5 from images
  189. filename = "equalize_mnist_result_c.npz"
  190. save_and_check_md5(ds_equalize_c, filename, generate_golden=GENERATE_GOLDEN)
  191. if plot:
  192. visualize_one_channel_dataset(images, images_trans, labels)
  193. def test_equalize_md5_py():
  194. """
  195. Test Equalize py op with md5 check
  196. """
  197. logger.info("Test Equalize")
  198. # First dataset
  199. data1 = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  200. transforms = F.ComposeOp([F.Decode(),
  201. F.Equalize(),
  202. F.ToTensor()])
  203. data1 = data1.map(input_columns="image", operations=transforms())
  204. # Compare with expected md5 from images
  205. filename = "equalize_01_result.npz"
  206. save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
  207. def test_equalize_md5_c():
  208. """
  209. Test Equalize cpp op with md5 check
  210. """
  211. logger.info("Test Equalize cpp op with md5 check")
  212. # Generate dataset
  213. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  214. transforms_equalize = [C.Decode(),
  215. C.Resize(size=[224, 224]),
  216. C.Equalize(),
  217. F.ToTensor()]
  218. data = ds.map(input_columns="image", operations=transforms_equalize)
  219. # Compare with expected md5 from images
  220. filename = "equalize_01_result_c.npz"
  221. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  222. if __name__ == "__main__":
  223. test_equalize_py(plot=False)
  224. test_equalize_c(plot=False)
  225. test_equalize_py_c(plot=False)
  226. test_equalize_mnist_c(plot=True)
  227. test_equalize_one_channel()
  228. test_equalize_md5_py()
  229. test_equalize_md5_c()