You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train FasterRcnn and get checkpoint files."""
  16. import os
  17. import time
  18. import argparse
  19. import ast
  20. import numpy as np
  21. import mindspore.common.dtype as mstype
  22. from mindspore import context, Tensor, Parameter
  23. from mindspore.communication.management import init, get_rank, get_group_size
  24. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
  25. from mindspore.train import Model
  26. from mindspore.context import ParallelMode
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.nn import SGD
  29. from mindspore.common import set_seed
  30. from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50
  31. from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet
  32. from src.config import config
  33. from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset
  34. from src.lr_schedule import dynamic_lr
  35. set_seed(1)
  36. parser = argparse.ArgumentParser(description="FasterRcnn training")
  37. parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.")
  38. parser.add_argument("--dataset", type=str, default="coco", help="Dataset name, default: coco.")
  39. parser.add_argument("--pre_trained", type=str, default="", help="Pretrained file path.")
  40. parser.add_argument("--device_target", type=str, default="Ascend",
  41. help="device where the code will be implemented, default is Ascend")
  42. parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.")
  43. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.")
  44. parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.")
  45. args_opt = parser.parse_args()
  46. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
  47. if __name__ == '__main__':
  48. if args_opt.run_distribute:
  49. if args_opt.device_target == "Ascend":
  50. rank = args_opt.rank_id
  51. device_num = args_opt.device_num
  52. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  53. gradients_mean=True)
  54. init()
  55. else:
  56. init("nccl")
  57. context.reset_auto_parallel_context()
  58. rank = get_rank()
  59. device_num = get_group_size()
  60. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  61. gradients_mean=True)
  62. else:
  63. rank = 0
  64. device_num = 1
  65. print("Start create dataset!")
  66. # It will generate mindrecord file in args_opt.mindrecord_dir,
  67. # and the file name is FasterRcnn.mindrecord0, 1, ... file_num.
  68. prefix = "FasterRcnn.mindrecord"
  69. mindrecord_dir = config.mindrecord_dir
  70. mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
  71. print("CHECKING MINDRECORD FILES ...")
  72. if rank == 0 and not os.path.exists(mindrecord_file):
  73. if not os.path.isdir(mindrecord_dir):
  74. os.makedirs(mindrecord_dir)
  75. if args_opt.dataset == "coco":
  76. if os.path.isdir(config.coco_root):
  77. if not os.path.exists(config.coco_root):
  78. print("Please make sure config:coco_root is valid.")
  79. raise ValueError(config.coco_root)
  80. print("Create Mindrecord. It may take some time.")
  81. data_to_mindrecord_byte_image("coco", True, prefix)
  82. print("Create Mindrecord Done, at {}".format(mindrecord_dir))
  83. else:
  84. print("coco_root not exits.")
  85. else:
  86. if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
  87. if not os.path.exists(config.image_dir):
  88. print("Please make sure config:image_dir is valid.")
  89. raise ValueError(config.image_dir)
  90. print("Create Mindrecord. It may take some time.")
  91. data_to_mindrecord_byte_image("other", True, prefix)
  92. print("Create Mindrecord Done, at {}".format(mindrecord_dir))
  93. else:
  94. print("image_dir or anno_path not exits.")
  95. while not os.path.exists(mindrecord_file + ".db"):
  96. time.sleep(5)
  97. print("CHECKING MINDRECORD FILES DONE!")
  98. loss_scale = float(config.loss_scale)
  99. # When create MindDataset, using the fitst mindrecord file, such as FasterRcnn.mindrecord0.
  100. dataset = create_fasterrcnn_dataset(mindrecord_file, batch_size=config.batch_size,
  101. device_num=device_num, rank_id=rank)
  102. dataset_size = dataset.get_dataset_size()
  103. print("Create dataset done!")
  104. net = Faster_Rcnn_Resnet50(config=config)
  105. net = net.set_train()
  106. load_path = args_opt.pre_trained
  107. if load_path != "":
  108. param_dict = load_checkpoint(load_path)
  109. key_mapping = {'down_sample_layer.1.beta': 'bn_down_sample.beta',
  110. 'down_sample_layer.1.gamma': 'bn_down_sample.gamma',
  111. 'down_sample_layer.0.weight': 'conv_down_sample.weight',
  112. 'down_sample_layer.1.moving_mean': 'bn_down_sample.moving_mean',
  113. 'down_sample_layer.1.moving_variance': 'bn_down_sample.moving_variance',
  114. }
  115. for oldkey in list(param_dict.keys()):
  116. if not oldkey.startswith(('backbone', 'end_point', 'global_step', 'learning_rate', 'moments', 'momentum')):
  117. data = param_dict.pop(oldkey)
  118. newkey = 'backbone.' + oldkey
  119. param_dict[newkey] = data
  120. oldkey = newkey
  121. for k, v in key_mapping.items():
  122. if k in oldkey:
  123. newkey = oldkey.replace(k, v)
  124. param_dict[newkey] = param_dict.pop(oldkey)
  125. break
  126. for item in list(param_dict.keys()):
  127. if not item.startswith('backbone'):
  128. param_dict.pop(item)
  129. for key, value in param_dict.items():
  130. tensor = value.asnumpy().astype(np.float32)
  131. param_dict[key] = Parameter(tensor, key)
  132. load_param_into_net(net, param_dict)
  133. loss = LossNet()
  134. lr = Tensor(dynamic_lr(config, dataset_size), mstype.float32)
  135. opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
  136. weight_decay=config.weight_decay, loss_scale=config.loss_scale)
  137. net_with_loss = WithLossCell(net, loss)
  138. if args_opt.run_distribute:
  139. net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale, reduce_flag=True,
  140. mean=True, degree=device_num)
  141. else:
  142. net = TrainOneStepCell(net_with_loss, net, opt, sens=config.loss_scale)
  143. time_cb = TimeMonitor(data_size=dataset_size)
  144. loss_cb = LossCallBack(rank_id=rank)
  145. cb = [time_cb, loss_cb]
  146. if config.save_checkpoint:
  147. ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * dataset_size,
  148. keep_checkpoint_max=config.keep_checkpoint_max)
  149. save_checkpoint_path = os.path.join(config.save_checkpoint_path, "ckpt_" + str(rank) + "/")
  150. ckpoint_cb = ModelCheckpoint(prefix='faster_rcnn', directory=save_checkpoint_path, config=ckptconfig)
  151. cb += [ckpoint_cb]
  152. model = Model(net)
  153. model.train(config.epoch_size, dataset, callbacks=cb)