You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_autocontrast.py 15 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing AutoContrast op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.engine as de
  20. import mindspore.dataset.transforms.vision.py_transforms as F
  21. import mindspore.dataset.transforms.vision.c_transforms as C
  22. from mindspore import log as logger
  23. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5
  24. DATA_DIR = "../data/dataset/testImageNetData/train/"
  25. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  26. GENERATE_GOLDEN = False
  27. def test_auto_contrast_py(plot=False):
  28. """
  29. Test AutoContrast
  30. """
  31. logger.info("Test AutoContrast Python Op")
  32. # Original Images
  33. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  34. transforms_original = F.ComposeOp([F.Decode(),
  35. F.Resize((224, 224)),
  36. F.ToTensor()])
  37. ds_original = ds.map(input_columns="image",
  38. operations=transforms_original())
  39. ds_original = ds_original.batch(512)
  40. for idx, (image, _) in enumerate(ds_original):
  41. if idx == 0:
  42. images_original = np.transpose(image, (0, 2, 3, 1))
  43. else:
  44. images_original = np.append(images_original,
  45. np.transpose(image, (0, 2, 3, 1)),
  46. axis=0)
  47. # AutoContrast Images
  48. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  49. transforms_auto_contrast = F.ComposeOp([F.Decode(),
  50. F.Resize((224, 224)),
  51. F.AutoContrast(cutoff=10.0, ignore=[10, 20]),
  52. F.ToTensor()])
  53. ds_auto_contrast = ds.map(input_columns="image",
  54. operations=transforms_auto_contrast())
  55. ds_auto_contrast = ds_auto_contrast.batch(512)
  56. for idx, (image, _) in enumerate(ds_auto_contrast):
  57. if idx == 0:
  58. images_auto_contrast = np.transpose(image, (0, 2, 3, 1))
  59. else:
  60. images_auto_contrast = np.append(images_auto_contrast,
  61. np.transpose(image, (0, 2, 3, 1)),
  62. axis=0)
  63. num_samples = images_original.shape[0]
  64. mse = np.zeros(num_samples)
  65. for i in range(num_samples):
  66. mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
  67. logger.info("MSE= {}".format(str(np.mean(mse))))
  68. # Compare with expected md5 from images
  69. filename = "autocontrast_01_result_py.npz"
  70. save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN)
  71. if plot:
  72. visualize_list(images_original, images_auto_contrast)
  73. def test_auto_contrast_c(plot=False):
  74. """
  75. Test AutoContrast C Op
  76. """
  77. logger.info("Test AutoContrast C Op")
  78. # AutoContrast Images
  79. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  80. ds = ds.map(input_columns=["image"],
  81. operations=[C.Decode(),
  82. C.Resize((224, 224))])
  83. python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
  84. c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
  85. transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)),
  86. python_op,
  87. np.array])()
  88. ds_auto_contrast_py = ds.map(input_columns="image",
  89. operations=transforms_op)
  90. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  91. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  92. if idx == 0:
  93. images_auto_contrast_py = image
  94. else:
  95. images_auto_contrast_py = np.append(images_auto_contrast_py,
  96. image,
  97. axis=0)
  98. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  99. ds = ds.map(input_columns=["image"],
  100. operations=[C.Decode(),
  101. C.Resize((224, 224))])
  102. ds_auto_contrast_c = ds.map(input_columns="image",
  103. operations=c_op)
  104. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  105. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  106. if idx == 0:
  107. images_auto_contrast_c = image
  108. else:
  109. images_auto_contrast_c = np.append(images_auto_contrast_c,
  110. image,
  111. axis=0)
  112. num_samples = images_auto_contrast_c.shape[0]
  113. mse = np.zeros(num_samples)
  114. for i in range(num_samples):
  115. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  116. logger.info("MSE= {}".format(str(np.mean(mse))))
  117. np.testing.assert_equal(np.mean(mse), 0.0)
  118. # Compare with expected md5 from images
  119. filename = "autocontrast_01_result_c.npz"
  120. save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
  121. if plot:
  122. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  123. def test_auto_contrast_one_channel_c(plot=False):
  124. """
  125. Test AutoContrast C op with one channel
  126. """
  127. logger.info("Test AutoContrast C Op With One Channel Images")
  128. # AutoContrast Images
  129. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  130. ds = ds.map(input_columns=["image"],
  131. operations=[C.Decode(),
  132. C.Resize((224, 224))])
  133. python_op = F.AutoContrast()
  134. c_op = C.AutoContrast()
  135. # not using F.ToTensor() since it converts to floats
  136. transforms_op = F.ComposeOp([lambda img: (np.array(img)[:, :, 0]).astype(np.uint8),
  137. F.ToPIL(),
  138. python_op,
  139. np.array])()
  140. ds_auto_contrast_py = ds.map(input_columns="image",
  141. operations=transforms_op)
  142. ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
  143. for idx, (image, _) in enumerate(ds_auto_contrast_py):
  144. if idx == 0:
  145. images_auto_contrast_py = image
  146. else:
  147. images_auto_contrast_py = np.append(images_auto_contrast_py,
  148. image,
  149. axis=0)
  150. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  151. ds = ds.map(input_columns=["image"],
  152. operations=[C.Decode(),
  153. C.Resize((224, 224)),
  154. lambda img: np.array(img[:, :, 0])])
  155. ds_auto_contrast_c = ds.map(input_columns="image",
  156. operations=c_op)
  157. ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
  158. for idx, (image, _) in enumerate(ds_auto_contrast_c):
  159. if idx == 0:
  160. images_auto_contrast_c = image
  161. else:
  162. images_auto_contrast_c = np.append(images_auto_contrast_c,
  163. image,
  164. axis=0)
  165. num_samples = images_auto_contrast_c.shape[0]
  166. mse = np.zeros(num_samples)
  167. for i in range(num_samples):
  168. mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
  169. logger.info("MSE= {}".format(str(np.mean(mse))))
  170. np.testing.assert_equal(np.mean(mse), 0.0)
  171. if plot:
  172. visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
  173. def test_auto_contrast_mnist_c(plot=False):
  174. """
  175. Test AutoContrast C op with MNIST dataset (Grayscale images)
  176. """
  177. logger.info("Test AutoContrast C Op With MNIST Images")
  178. ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  179. ds_auto_contrast_c = ds.map(input_columns="image",
  180. operations=C.AutoContrast(cutoff=1, ignore=(0, 255)))
  181. ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  182. images = []
  183. images_trans = []
  184. labels = []
  185. for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_auto_contrast_c)):
  186. image_orig, label_orig = data_orig
  187. image_trans, _ = data_trans
  188. images.append(image_orig)
  189. labels.append(label_orig)
  190. images_trans.append(image_trans)
  191. # Compare with expected md5 from images
  192. filename = "autocontrast_mnist_result_c.npz"
  193. save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
  194. if plot:
  195. visualize_one_channel_dataset(images, images_trans, labels)
  196. def test_auto_contrast_invalid_ignore_param_c():
  197. """
  198. Test AutoContrast C Op with invalid ignore parameter
  199. """
  200. logger.info("Test AutoContrast C Op with invalid ignore parameter")
  201. try:
  202. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  203. ds = ds.map(input_columns=["image"],
  204. operations=[C.Decode(),
  205. C.Resize((224, 224)),
  206. lambda img: np.array(img[:, :, 0])])
  207. # invalid ignore
  208. ds = ds.map(input_columns="image",
  209. operations=C.AutoContrast(ignore=255.5))
  210. except TypeError as error:
  211. logger.info("Got an exception in DE: {}".format(str(error)))
  212. assert "Argument ignore with value 255.5 is not of type" in str(error)
  213. try:
  214. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  215. ds = ds.map(input_columns=["image"],
  216. operations=[C.Decode(),
  217. C.Resize((224, 224)),
  218. lambda img: np.array(img[:, :, 0])])
  219. # invalid ignore
  220. ds = ds.map(input_columns="image",
  221. operations=C.AutoContrast(ignore=(10, 100)))
  222. except TypeError as error:
  223. logger.info("Got an exception in DE: {}".format(str(error)))
  224. assert "Argument ignore with value (10,100) is not of type" in str(error)
  225. def test_auto_contrast_invalid_cutoff_param_c():
  226. """
  227. Test AutoContrast C Op with invalid cutoff parameter
  228. """
  229. logger.info("Test AutoContrast C Op with invalid cutoff parameter")
  230. try:
  231. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  232. ds = ds.map(input_columns=["image"],
  233. operations=[C.Decode(),
  234. C.Resize((224, 224)),
  235. lambda img: np.array(img[:, :, 0])])
  236. # invalid ignore
  237. ds = ds.map(input_columns="image",
  238. operations=C.AutoContrast(cutoff=-10.0))
  239. except ValueError as error:
  240. logger.info("Got an exception in DE: {}".format(str(error)))
  241. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  242. try:
  243. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  244. ds = ds.map(input_columns=["image"],
  245. operations=[C.Decode(),
  246. C.Resize((224, 224)),
  247. lambda img: np.array(img[:, :, 0])])
  248. # invalid ignore
  249. ds = ds.map(input_columns="image",
  250. operations=C.AutoContrast(cutoff=120.0))
  251. except ValueError as error:
  252. logger.info("Got an exception in DE: {}".format(str(error)))
  253. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  254. def test_auto_contrast_invalid_ignore_param_py():
  255. """
  256. Test AutoContrast python Op with invalid ignore parameter
  257. """
  258. logger.info("Test AutoContrast python Op with invalid ignore parameter")
  259. try:
  260. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  261. ds = ds.map(input_columns=["image"],
  262. operations=[F.ComposeOp([F.Decode(),
  263. F.Resize((224, 224)),
  264. F.AutoContrast(ignore=255.5),
  265. F.ToTensor()])])
  266. except TypeError as error:
  267. logger.info("Got an exception in DE: {}".format(str(error)))
  268. assert "Argument ignore with value 255.5 is not of type" in str(error)
  269. try:
  270. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  271. ds = ds.map(input_columns=["image"],
  272. operations=[F.ComposeOp([F.Decode(),
  273. F.Resize((224, 224)),
  274. F.AutoContrast(ignore=(10, 100)),
  275. F.ToTensor()])])
  276. except TypeError as error:
  277. logger.info("Got an exception in DE: {}".format(str(error)))
  278. assert "Argument ignore with value (10,100) is not of type" in str(error)
  279. def test_auto_contrast_invalid_cutoff_param_py():
  280. """
  281. Test AutoContrast python Op with invalid cutoff parameter
  282. """
  283. logger.info("Test AutoContrast python Op with invalid cutoff parameter")
  284. try:
  285. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  286. ds = ds.map(input_columns=["image"],
  287. operations=[F.ComposeOp([F.Decode(),
  288. F.Resize((224, 224)),
  289. F.AutoContrast(cutoff=-10.0),
  290. F.ToTensor()])])
  291. except ValueError as error:
  292. logger.info("Got an exception in DE: {}".format(str(error)))
  293. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  294. try:
  295. ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
  296. ds = ds.map(input_columns=["image"],
  297. operations=[F.ComposeOp([F.Decode(),
  298. F.Resize((224, 224)),
  299. F.AutoContrast(cutoff=120.0),
  300. F.ToTensor()])])
  301. except ValueError as error:
  302. logger.info("Got an exception in DE: {}".format(str(error)))
  303. assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
  304. if __name__ == "__main__":
  305. test_auto_contrast_py(plot=True)
  306. test_auto_contrast_c(plot=True)
  307. test_auto_contrast_one_channel_c(plot=True)
  308. test_auto_contrast_mnist_c(plot=True)
  309. test_auto_contrast_invalid_ignore_param_c()
  310. test_auto_contrast_invalid_ignore_param_py()
  311. test_auto_contrast_invalid_cutoff_param_c()
  312. test_auto_contrast_invalid_cutoff_param_py()