You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. BGCF training script.
  17. """
  18. import time
  19. from mindspore import Tensor
  20. import mindspore.context as context
  21. from mindspore.common import dtype as mstype
  22. from mindspore.train.serialization import save_checkpoint
  23. from src.bgcf import BGCF
  24. from src.config import parser_args
  25. from src.utils import convert_item_id
  26. from src.callback import TrainBGCF
  27. from src.dataset import load_graph, create_dataset
  28. def train():
  29. """Train"""
  30. num_user = train_graph.graph_info()["node_num"][0]
  31. num_item = train_graph.graph_info()["node_num"][1]
  32. num_pairs = train_graph.graph_info()['edge_num'][0]
  33. bgcfnet = BGCF([parser.input_dim, num_user, num_item],
  34. parser.embedded_dimension,
  35. parser.activation,
  36. parser.neighbor_dropout,
  37. num_user,
  38. num_item,
  39. parser.input_dim)
  40. train_net = TrainBGCF(bgcfnet, parser.num_neg, parser.l2, parser.learning_rate,
  41. parser.epsilon, parser.dist_reg)
  42. train_net.set_train(True)
  43. itr = train_ds.create_dict_iterator(parser.num_epoch, output_numpy=True)
  44. num_iter = int(num_pairs / parser.batch_pairs)
  45. for _epoch in range(1, parser.num_epoch + 1):
  46. epoch_start = time.time()
  47. iter_num = 1
  48. for data in itr:
  49. u_id = Tensor(data["users"], mstype.int32)
  50. pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32)
  51. neg_item_id = Tensor(convert_item_id(data["neg_item_id"], num_user), mstype.int32)
  52. pos_users = Tensor(data["pos_users"], mstype.int32)
  53. pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32)
  54. u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32)
  55. u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32)
  56. u_gnew_neighs = Tensor(convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32)
  57. i_group_nodes = Tensor(convert_item_id(data["i_group_nodes"], num_user), mstype.int32)
  58. i_neighs = Tensor(data["i_neighs"], mstype.int32)
  59. i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32)
  60. neg_group_nodes = Tensor(convert_item_id(data["neg_group_nodes"], num_user), mstype.int32)
  61. neg_neighs = Tensor(data["neg_neighs"], mstype.int32)
  62. neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32)
  63. train_loss = train_net(u_id,
  64. pos_item_id,
  65. neg_item_id,
  66. pos_users,
  67. pos_items,
  68. u_group_nodes,
  69. u_neighs,
  70. u_gnew_neighs,
  71. i_group_nodes,
  72. i_neighs,
  73. i_gnew_neighs,
  74. neg_group_nodes,
  75. neg_neighs,
  76. neg_gnew_neighs)
  77. if iter_num == num_iter:
  78. print('Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num,
  79. 'loss',
  80. '{}, cost:{:.4f}'.format(train_loss, time.time() - epoch_start))
  81. iter_num += 1
  82. if _epoch % parser.eval_interval == 0:
  83. save_checkpoint(bgcfnet, parser.ckptpath + "/bgcf_epoch{}.ckpt".format(_epoch))
  84. if __name__ == "__main__":
  85. parser = parser_args()
  86. context.set_context(mode=context.GRAPH_MODE,
  87. device_target="Ascend",
  88. save_graphs=False,
  89. device_id=parser.device)
  90. train_graph, _, sampled_graph_list = load_graph(parser.datapath)
  91. train_ds = create_dataset(train_graph, sampled_graph_list, parser.workers, batch_size=parser.batch_pairs,
  92. num_samples=parser.raw_neighs, num_bgcn_neigh=parser.gnew_neighs, num_neg=parser.num_neg)
  93. train()