# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ BGCF training script. """ import time from mindspore import Tensor import mindspore.context as context from mindspore.common import dtype as mstype from mindspore.train.serialization import save_checkpoint from src.bgcf import BGCF from src.config import parser_args from src.utils import convert_item_id from src.callback import TrainBGCF from src.dataset import load_graph, create_dataset def train(): """Train""" num_user = train_graph.graph_info()["node_num"][0] num_item = train_graph.graph_info()["node_num"][1] num_pairs = train_graph.graph_info()['edge_num'][0] bgcfnet = BGCF([parser.input_dim, num_user, num_item], parser.embedded_dimension, parser.activation, parser.neighbor_dropout, num_user, num_item, parser.input_dim) train_net = TrainBGCF(bgcfnet, parser.num_neg, parser.l2, parser.learning_rate, parser.epsilon, parser.dist_reg) train_net.set_train(True) itr = train_ds.create_dict_iterator(parser.num_epoch, output_numpy=True) num_iter = int(num_pairs / parser.batch_pairs) for _epoch in range(1, parser.num_epoch + 1): epoch_start = time.time() iter_num = 1 for data in itr: u_id = Tensor(data["users"], mstype.int32) pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32) neg_item_id = Tensor(convert_item_id(data["neg_item_id"], num_user), mstype.int32) pos_users = Tensor(data["pos_users"], mstype.int32) pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32) u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32) u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32) u_gnew_neighs = Tensor(convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32) i_group_nodes = Tensor(convert_item_id(data["i_group_nodes"], num_user), mstype.int32) i_neighs = Tensor(data["i_neighs"], mstype.int32) i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32) neg_group_nodes = Tensor(convert_item_id(data["neg_group_nodes"], num_user), mstype.int32) neg_neighs = Tensor(data["neg_neighs"], mstype.int32) neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32) train_loss = train_net(u_id, pos_item_id, neg_item_id, pos_users, pos_items, u_group_nodes, u_neighs, u_gnew_neighs, i_group_nodes, i_neighs, i_gnew_neighs, neg_group_nodes, neg_neighs, neg_gnew_neighs) if iter_num == num_iter: print('Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num, 'loss', '{}, cost:{:.4f}'.format(train_loss, time.time() - epoch_start)) iter_num += 1 if _epoch % parser.eval_interval == 0: save_checkpoint(bgcfnet, parser.ckptpath + "/bgcf_epoch{}.ckpt".format(_epoch)) if __name__ == "__main__": parser = parser_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=parser.device) train_graph, _, sampled_graph_list = load_graph(parser.datapath) train_ds = create_dataset(train_graph, sampled_graph_list, parser.workers, batch_size=parser.batch_pairs, num_samples=parser.raw_neighs, num_bgcn_neigh=parser.gnew_neighs, num_neg=parser.num_neg) train()