You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 49 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. import mindspore.nn as nn
  19. import mindspore.ops.composite as C
  20. from mindspore import Tensor
  21. from mindspore import ops, Parameter, context
  22. from mindspore.common import dtype as mstype
  23. from mindspore.ops import functional as F
  24. from mindspore.ops import operations as P
  25. from mindspore.ops.operations import _grad_ops as G
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for i in range(len(args)):
  73. t = t + (self.mul(args[i], args[i]),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class NetForFlattenComposed(nn.Cell):
  95. # make flatten op together with other ops for testing flatten grad
  96. def __init__(self):
  97. super(NetForFlattenComposed, self).__init__()
  98. self.flatten = P.Flatten()
  99. def construct(self, x, y):
  100. return self.flatten(x+x) + y
  101. class ArgmaxNet(nn.Cell):
  102. def __init__(self):
  103. super(ArgmaxNet, self).__init__()
  104. self.argmax = P.Argmax(axis=1)
  105. def construct(self, input):
  106. return self.argmax(input)
  107. class ArgminNet(nn.Cell):
  108. def __init__(self):
  109. super(ArgminNet, self).__init__()
  110. self.argmin = P.Argmin(axis=1)
  111. def construct(self, input):
  112. return self.argmin(input)
  113. class CumSumNet(nn.Cell):
  114. def __init__(self):
  115. super(CumSumNet, self).__init__()
  116. self.cumsum = P.CumSum()
  117. self.axis = 1
  118. def construct(self, input):
  119. return self.cumsum(input, self.axis)
  120. class SummaryNet(nn.Cell):
  121. def __init__(self):
  122. super(SummaryNet, self).__init__()
  123. self.s = P.ScalarSummary()
  124. self.add = P.TensorAdd()
  125. def construct(self, x, y):
  126. self.s("x1", x)
  127. return self.add(x, y)
  128. class HistogramSummaryNet(nn.Cell):
  129. def __init__(self):
  130. super(HistogramSummaryNet, self).__init__()
  131. self.summary = P.HistogramSummary()
  132. self.add = P.TensorAdd()
  133. def construct(self, x, y):
  134. out = self.add(x, y)
  135. string_in = "out"
  136. self.summary(string_in, out)
  137. return out
  138. class ScatterMax(nn.Cell):
  139. """ScatterMax net definition"""
  140. def __init__(self):
  141. super(ScatterMax, self).__init__()
  142. self.scatter_max = P.ScatterMax()
  143. self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
  144. def construct(self, indices, updates):
  145. out = self.scatter_max(self.ref, indices, updates)
  146. return out
  147. class ApplyFtrlNet(nn.Cell):
  148. def __init__(self):
  149. super(ApplyFtrlNet, self).__init__()
  150. self.apply_ftrl = P.ApplyFtrl()
  151. self.lr = 0.001
  152. self.l1 = 0.0
  153. self.l2 = 0.0
  154. self.lr_power = -0.5
  155. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  156. self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
  157. self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
  158. def construct(self, grad):
  159. out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power)
  160. return out
  161. class ApplyRMSNet(nn.Cell):
  162. def __init__(self):
  163. super(ApplyRMSNet, self).__init__()
  164. self.apply_rms = P.ApplyRMSProp()
  165. self.lr = 0.001
  166. self.rho = 0.0
  167. self.momentum= 0.0
  168. self.epsilon = 1e-10
  169. self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
  170. self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
  171. self.moment = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="moment")
  172. def construct(self, grad):
  173. out = self.apply_rms(self.var, self.ms, self.moment, self.lr, grad, self.rho, self.momentum, self.epsilon)
  174. return out
  175. test_case_math_ops = [
  176. ('Neg', {
  177. 'block': P.Neg(),
  178. 'desc_inputs': [[1, 3, 4, 4]],
  179. 'desc_bprop': [[1, 3, 4, 4]]}),
  180. ('Sub', {
  181. 'block': P.Sub(),
  182. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  183. 'desc_bprop': [[2, 3, 3, 5]]}),
  184. ('TensorAdd', {
  185. 'block': P.TensorAdd(),
  186. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  187. 'desc_bprop': [[2, 3, 3, 5]]}),
  188. ('Mul0', {
  189. 'block': P.Mul(),
  190. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  191. 'desc_bprop': [[2, 3, 3, 5]]}),
  192. ('Mul1', {
  193. 'block': P.Mul(),
  194. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  195. 'desc_bprop': [[2, 3, 3, 5]]}),
  196. ('Mul2', {
  197. 'block': P.Mul(),
  198. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  199. 'desc_bprop': [[2, 3, 3, 5]],
  200. 'skip': ['backward']}),
  201. ('Mul3', {
  202. 'block': P.Mul(),
  203. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  204. 'desc_bprop': [[2, 3, 3, 5]],
  205. 'skip': ['backward']}),
  206. ('Mul4', {
  207. 'block': P.Mul(),
  208. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  209. 'desc_bprop': [[2, 3, 3, 5]],
  210. 'skip': ['backward']}),
  211. ('Add0', {
  212. 'block': P.TensorAdd(),
  213. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  214. 'desc_bprop': [[2, 3, 3, 5]]}),
  215. ('Add1', {
  216. 'block': P.TensorAdd(),
  217. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  218. 'desc_bprop': [[2, 3, 3, 5]],
  219. 'skip': ['backward']}),
  220. ('Add2', {
  221. 'block': P.TensorAdd(),
  222. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  223. 'desc_bprop': [[2, 3, 3, 5]],
  224. 'skip': ['backward']}),
  225. ('Add3', {
  226. 'block': P.TensorAdd(),
  227. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  228. 'desc_bprop': [[2, 3, 3, 5]],
  229. 'skip': ['backward']}),
  230. ('Add4', {
  231. 'block': P.TensorAdd(),
  232. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  233. 'desc_bprop': [[2, 3, 3, 5]],
  234. 'skip': ['backward']}),
  235. ('Minimum', {
  236. 'block': P.Minimum(),
  237. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  238. 'desc_bprop': [[2, 3, 3, 5]]}),
  239. ('Pow_0', {
  240. 'block': P.Pow(),
  241. 'desc_const': [2.0],
  242. 'desc_inputs': [[2, 3, 3, 5]],
  243. 'desc_bprop': [[2, 3, 3, 5]]}),
  244. ('Pow_1', {
  245. 'block': P.Pow(),
  246. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  247. 'desc_bprop': [[2, 3, 3, 5]]}),
  248. ('Exp', {
  249. 'block': P.Exp(),
  250. 'desc_inputs': [[2, 3]],
  251. 'desc_bprop': [[2, 3]]}),
  252. ('Erf', {
  253. 'block': P.Erf(),
  254. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  255. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  256. ('Floor', {
  257. 'block': P.Floor(),
  258. 'desc_inputs': [[2, 512, 56, 56]],
  259. 'desc_bprop': [[2, 512, 56, 56]],
  260. 'skip': ['backward']}),
  261. ('ACos', {
  262. 'block': P.ACos(),
  263. 'desc_inputs': [[2, 3]],
  264. 'desc_bprop': [[2, 3]]}),
  265. ('Acosh', {
  266. 'block': P.Acosh(),
  267. 'desc_inputs': [[3, 4, 5]],
  268. 'desc_bprop': [[3, 4, 5]]}),
  269. ('Sin', {
  270. 'block': P.Sin(),
  271. 'desc_inputs': [[2, 3]],
  272. 'desc_bprop': [[2, 3]]}),
  273. ('Reciprocal', {
  274. 'block': P.Reciprocal(),
  275. 'desc_inputs': [[2, 3, 3, 5]],
  276. 'desc_bprop': [[2, 3, 3, 5]]}),
  277. ('Minimum_0', {
  278. 'block': P.Minimum(),
  279. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  280. 'desc_bprop': [[2, 3, 3, 5]]}),
  281. ('Maximum', {
  282. 'block': P.Maximum(),
  283. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  284. 'desc_bprop': [[2, 3, 3, 5]]}),
  285. ('Maximum_0', {
  286. 'block': P.Maximum(),
  287. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  288. 'desc_bprop': [[2, 3, 3, 5]]}),
  289. ('MaximumGrad', {
  290. 'block': G.MaximumGrad(),
  291. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  292. 'skip': ['backward']}),
  293. ('MinimumGrad', {
  294. 'block': G.MinimumGrad(),
  295. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  296. 'skip': ['backward']}),
  297. ('StridedSlice', {
  298. 'block': P.StridedSlice(),
  299. 'desc_const': [(0, 1, 2, 1),
  300. (2, 3, 3, 4),
  301. (1, 1, 1, 1)],
  302. 'desc_inputs': [[2, 3, 3, 5]],
  303. 'desc_bprop': [[2, 2, 1, 3]]}),
  304. ('Slice_1', {
  305. 'block': P.Slice(),
  306. 'desc_const': [(0, 1, 2, 1),
  307. (1, 1, 1, 2)],
  308. 'desc_inputs': [[2, 3, 3, 5]],
  309. 'desc_bprop': [[1, 1, 1, 2]]}),
  310. ('StridedSliceGrad', {
  311. 'block': G.StridedSliceGrad(),
  312. 'desc_const': [(64, 1, 1024),
  313. (0, 1, 0),
  314. (64, 2, 1024),
  315. (1, 1, 1)],
  316. 'desc_inputs': [[64, 128, 1024]],
  317. 'skip': ['backward']}),
  318. ('RandomChoiceWithMask', {
  319. 'block': P.RandomChoiceWithMask(256),
  320. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  321. 'desc_bprop': [[256, 4], [256, 4]],
  322. 'skip': ['backward']}),
  323. ('LessEqual', {
  324. 'block': P.LessEqual(),
  325. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  326. Tensor(np.random.rand(4).astype(np.float16))],
  327. 'skip': ['backward']}),
  328. ('Less', {
  329. 'block': P.Less(),
  330. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  331. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  332. 'skip': ['backward']}),
  333. ('RealDiv_0', {
  334. 'block': P.RealDiv(),
  335. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  336. 'desc_inputs': [],
  337. 'skip': ['backward']}),
  338. ('RealDiv', {
  339. 'block': P.RealDiv(),
  340. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  341. 'desc_bprop': [[4]]}),
  342. ('RealDiv_1', {
  343. 'block': P.RealDiv(),
  344. 'desc_inputs': [[512, 1024], [512, 1024]],
  345. 'desc_bprop': [[512, 1024]]}),
  346. ('FloorDiv', {
  347. 'block': P.FloorDiv(),
  348. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  349. Tensor(np.random.rand(4).astype(np.float16))],
  350. 'skip': ['backward']}),
  351. ('FloorMod', {
  352. 'block': P.FloorMod(),
  353. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  354. 'desc_bprop': [[2, 3, 4, 5]]}),
  355. ('identity', {
  356. 'block': ops.functional.identity,
  357. 'desc_inputs': [[2, 2]],
  358. 'skip': ['backward']}),
  359. ('MatMul_1', {
  360. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  361. 'desc_inputs': [[1024, 160], [160, 1024]],
  362. 'desc_bprop': [[1024, 1024]]}),
  363. ('MatMul_2', {
  364. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  365. 'desc_inputs': [[160, 1024], [1024, 160]],
  366. 'desc_bprop': [[1024, 1024]]}),
  367. ('Sub', {
  368. 'block': P.Sub(),
  369. 'desc_inputs': [[3], [3]],
  370. 'desc_bprop': [[3]]}),
  371. ('TruncatedNormal', {
  372. 'block': P.TruncatedNormal(),
  373. 'desc_const': [(1, 2, 3)],
  374. 'desc_inputs': [],
  375. 'skip': ['backward'],
  376. 'add_fake_input': True}),
  377. ('Select', {
  378. 'block': P.Select(),
  379. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  380. [2, 3], [2, 3]],
  381. 'desc_bprop': [[2, 3]]}),
  382. ('Rank', {
  383. 'block': P.Rank(),
  384. 'desc_inputs': [[2, 3]],
  385. 'skip': ['backward']}),
  386. ('InvertPermutation', {
  387. 'block': P.InvertPermutation(),
  388. 'desc_const': [(0, 3, 1, 2)],
  389. 'desc_inputs': [],
  390. 'skip': ['backward']}),
  391. ('Square', {
  392. 'block': P.Square(),
  393. 'desc_inputs': [[4]],
  394. 'desc_bprop': [[4]]}),
  395. ('Rsqrt', {
  396. 'block': P.Rsqrt(),
  397. 'desc_inputs': [[4]],
  398. 'desc_bprop': [[4]]}),
  399. ('Sqrt', {
  400. 'block': P.Sqrt(),
  401. 'desc_inputs': [[4]],
  402. 'desc_bprop': [[4]]}),
  403. ('RealDiv', {
  404. 'block': P.RealDiv(),
  405. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  406. 'desc_bprop': [[2, 3, 4, 5]]}),
  407. ('Div', {
  408. 'block': P.Div(),
  409. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  410. 'desc_bprop': [[2, 3, 4, 5]]}),
  411. ('Equal', {
  412. 'block': P.Equal(),
  413. 'desc_inputs': [[3, 4, 5], [4, 5]],
  414. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  415. ('NotEqual', {
  416. 'block': P.NotEqual(),
  417. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  418. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  419. ('NotEqual_0', {
  420. 'block': P.NotEqual(),
  421. 'desc_inputs': [1, [2, 3, 4, 5]],
  422. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  423. 'skip': ['backward']}),
  424. ('Greater', {
  425. 'block': P.Greater(),
  426. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  427. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  428. ('GreaterEqual', {
  429. 'block': P.GreaterEqual(),
  430. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  431. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  432. ('LogicalNot', {
  433. 'block': P.LogicalNot(),
  434. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  435. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  436. ('LogicalAnd', {
  437. 'block': P.LogicalAnd(),
  438. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  439. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  440. ('LogicalOr', {
  441. 'block': P.LogicalOr(),
  442. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  443. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  444. ('NpuAllocFloatStatus', {
  445. 'block': P.NPUAllocFloatStatus(),
  446. 'desc_inputs': [],
  447. 'add_fack_input': True,
  448. 'fack_input_type': np.float32,
  449. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  450. 'skip': ['backward']}),
  451. ('NpuGetFloatStatus', {
  452. 'block': P.NPUGetFloatStatus(),
  453. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  454. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  455. 'skip': ['backward']}),
  456. ('NpuClearFloatStatus', {
  457. 'block': P.NPUClearFloatStatus(),
  458. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  459. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  460. 'skip': ['backward']}),
  461. ('CheckValid', {
  462. 'block': P.CheckValid(),
  463. 'desc_inputs': [[20000, 4], [3]],
  464. 'desc_bprop': [[20000]],
  465. 'skip': ['backward']}),
  466. ('NMSWithMask', {
  467. 'block': P.NMSWithMask(0.5),
  468. 'desc_inputs': [[128, 5]],
  469. 'desc_bprop': [[128, 5], [128], [128]],
  470. 'skip': ['backward']}),
  471. ('Abs', {
  472. 'block': P.Abs(),
  473. 'desc_inputs': [[4]],
  474. 'desc_bprop': [[4]]}),
  475. ('CumSum', {
  476. 'block': CumSumNet(),
  477. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
  478. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))]}),
  479. ('ReduceSum_3', {
  480. 'block': P.ReduceSum(),
  481. 'desc_const': [0],
  482. 'desc_inputs': [[3, 2]],
  483. 'desc_bprop': [[2]]}),
  484. ('ReduceSum_4', {
  485. 'block': P.ReduceSum(keep_dims=True),
  486. 'desc_const': [0],
  487. 'desc_inputs': [[3, 2]],
  488. 'desc_bprop': [[1, 2]]}),
  489. ('ReduceSum_5', {
  490. 'block': P.ReduceSum(keep_dims=True),
  491. 'desc_inputs': [[2, 3, 4]],
  492. 'desc_bprop': [[1, 1, 1]]}),
  493. ('ReduceSum_6', {
  494. 'block': P.ReduceSum(),
  495. 'desc_inputs': [[2, 3, 4]],
  496. 'desc_bprop': [[1]]}),
  497. ('Sum_0', {
  498. 'block': P.ReduceSum(),
  499. 'desc_const': [(1,)],
  500. 'desc_inputs': [[3, 2]],
  501. 'desc_bprop': [[3]]}),
  502. ('Sum_1', {
  503. 'block': P.ReduceSum(keep_dims=True),
  504. 'desc_const': [(1,)],
  505. 'desc_inputs': [[3, 2]],
  506. 'desc_bprop': [[3, 1]]}),
  507. ('Sum_2', {
  508. 'block': P.ReduceSum(),
  509. 'desc_const': [(0, 1)],
  510. 'desc_inputs': [[3, 2]],
  511. 'desc_bprop': [[1]]}),
  512. ('Sum_3', {
  513. 'block': P.ReduceSum(),
  514. 'desc_const': [0],
  515. 'desc_inputs': [[3, 2]],
  516. 'desc_bprop': [[2]]}),
  517. ('Sum_4', {
  518. 'block': P.ReduceSum(keep_dims=True),
  519. 'desc_const': [0],
  520. 'desc_inputs': [[3, 2]],
  521. 'desc_bprop': [[1, 2]]}),
  522. ('Sum_5', {
  523. 'block': P.ReduceSum(keep_dims=True),
  524. 'desc_const': [()],
  525. 'desc_inputs': [[2, 3, 4]],
  526. 'desc_bprop': [[1, 1, 1]]}),
  527. ('Sum_6', {
  528. 'block': P.ReduceSum(),
  529. 'desc_const': [()],
  530. 'desc_inputs': [[2, 3, 4]],
  531. 'desc_bprop': [[1]]}),
  532. ('Sign', {
  533. 'block': P.Sign(),
  534. 'desc_inputs': [[3]],
  535. 'desc_bprop': [[3]]}),
  536. ('Round', {
  537. 'block': P.Round(),
  538. 'desc_inputs': [[3]],
  539. 'desc_bprop': [[3]]}),
  540. ('Atan2', {
  541. 'block': P.Atan2(),
  542. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  543. Tensor(np.array([1, 1]).astype(np.float32))],
  544. 'desc_bprop': [[2]]}),
  545. ('SquareSumAll', {
  546. 'block': P.SquareSumAll(),
  547. 'desc_inputs': [Tensor(np.array([0, 1, 4, 5]).astype(np.float32)),
  548. Tensor(np.array([1, 1, 3, 7]).astype(np.float32))],
  549. 'skip': ['backward']}),
  550. ('Cos', {
  551. 'block': P.Cos(),
  552. 'desc_inputs': [[2, 3]],
  553. 'desc_bprop': [[2, 3]]}),
  554. ]
  555. test_case_nn_ops = [
  556. ('BiasAdd', {
  557. 'block': P.BiasAdd(),
  558. 'desc_inputs': [[1, 3, 3, 3], [3]],
  559. 'desc_bprop': [[1, 3, 3, 3]]}),
  560. ('BiasAddGrad', {
  561. 'block': G.BiasAddGrad(),
  562. 'desc_inputs': [[1, 3, 3, 3]],
  563. 'skip': ['backward']}),
  564. ('Gelu', {
  565. 'block': P.Gelu(),
  566. 'desc_inputs': [[1, 3, 4, 4]],
  567. 'desc_bprop': [[1, 3, 4, 4]]}),
  568. ('GeluGrad', {
  569. 'block': G.GeluGrad(),
  570. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  571. 'desc_bprop': [[2, 2]],
  572. 'skip': ['backward']}),
  573. ('Tanh', {
  574. 'block': P.Tanh(),
  575. 'desc_inputs': [[1, 3, 4, 4]],
  576. 'desc_bprop': [[1, 3, 4, 4]]}),
  577. ('TanhGrad', {
  578. 'block': G.TanhGrad(),
  579. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  580. 'desc_bprop': [[1, 3, 4, 4]],
  581. 'skip': ['backward']}),
  582. ('ReLU', {
  583. 'block': P.ReLU(),
  584. 'desc_inputs': [[1, 3, 4, 4]],
  585. 'desc_bprop': [[1, 3, 4, 4]]}),
  586. ('ReLU6', {
  587. 'block': P.ReLU6(),
  588. 'desc_inputs': [[1, 3, 4, 4]],
  589. 'desc_bprop': [[1, 3, 4, 4]]}),
  590. ('ReLUV2', {
  591. 'block': P.ReLUV2(),
  592. 'desc_inputs': [[1, 3, 4, 4]],
  593. 'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
  594. ('ReLUGrad', {
  595. 'block': G.ReluGrad(),
  596. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  597. 'skip': ['backward']}),
  598. ('Softplus', {
  599. 'block': P.Softplus(),
  600. 'desc_inputs': [[1, 3, 4, 4]],
  601. 'desc_bprop': [[1, 3, 4, 4]]}),
  602. ('SoftplusGrad', {
  603. 'block': G.SoftplusGrad(),
  604. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  605. 'skip': ['backward']}),
  606. ('Elu', {
  607. 'block': P.Elu(),
  608. 'desc_inputs': [[2, 3, 4]],
  609. 'desc_bprop': [[2, 3, 4]]}),
  610. ('EluGrad', {
  611. 'block': G.EluGrad(),
  612. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  613. 'desc_bprop': [[2, 3, 4]],
  614. 'skip': ['backward']}),
  615. ('Sigmoid', {
  616. 'block': P.Sigmoid(),
  617. 'desc_inputs': [[1, 3, 4, 4]],
  618. 'desc_bprop': [[1, 3, 4, 4]]}),
  619. ('MaxPool', {
  620. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  621. 'desc_inputs': [[100, 3, 28, 28]],
  622. 'desc_bprop': [[100, 3, 14, 14]]}),
  623. ('MaxPoolGrad', {
  624. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  625. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  626. 'desc_bprop': [[3, 4, 6, 6]],
  627. 'skip': ['backward']}),
  628. ('AvgPool', {
  629. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  630. 'desc_inputs': [[100, 3, 28, 28]],
  631. 'desc_bprop': [[100, 3, 14, 14]]}),
  632. ('AvgPoolGrad', {
  633. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  634. 'desc_const': [(3, 4, 6, 6)],
  635. 'const_first': True,
  636. 'desc_inputs': [[3, 4, 6, 6]],
  637. 'desc_bprop': [[3, 4, 6, 6]],
  638. 'skip': ['backward']}),
  639. ('MaxPoolWithArgmax', {
  640. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  641. 'desc_inputs': [[128, 32, 32, 64]],
  642. 'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
  643. ('SoftmaxCrossEntropyWithLogits', {
  644. 'block': P.SoftmaxCrossEntropyWithLogits(),
  645. 'desc_inputs': [[1, 10], [1, 10]],
  646. 'desc_bprop': [[1], [1, 10]],
  647. 'skip': ['backward_exec']}),
  648. ('Flatten', {
  649. 'block': P.Flatten(),
  650. 'desc_inputs': [[128, 32, 32, 64]],
  651. 'desc_bprop': [[128, 65536]]}),
  652. ('LogSoftmax', {
  653. 'block': P.LogSoftmax(),
  654. 'desc_inputs': [[64, 2]],
  655. 'desc_bprop': [[64, 2]]}),
  656. ('LogSoftmaxGrad', {
  657. 'block': G.LogSoftmaxGrad(),
  658. 'desc_inputs': [[16, 1234], [16, 1234]],
  659. 'desc_bprop': [[64, 2]],
  660. 'skip': ['backward']}),
  661. ('L2Normalize', {
  662. 'block': P.L2Normalize(),
  663. 'desc_inputs': [[2, 2]],
  664. 'desc_bprop': [[2, 2]]}),
  665. ('L2NormalizeGrad', {
  666. 'block': G.L2NormalizeGrad(),
  667. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  668. 'desc_bprop': [[2, 2]],
  669. 'skip': ['backward']}),
  670. ('LayerNorm', {
  671. 'block': P.LayerNorm(),
  672. 'desc_inputs': [[2, 16], [16], [16]],
  673. 'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
  674. ('LayerNormGrad', {
  675. 'block': G.LayerNormGrad(),
  676. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  677. 'desc_bprop': [[2, 16], [16], [16]],
  678. 'skip': ['backward']}),
  679. ('FusedBatchNorm', {
  680. 'block': P.FusedBatchNorm(),
  681. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  682. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  683. 'skip': []}),
  684. ('FusedBatchNormGrad', {
  685. 'block': G.FusedBatchNormGrad(),
  686. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  687. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  688. 'skip': ['backward']}),
  689. ('BatchNorm', {
  690. 'block': P.BatchNorm(),
  691. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  692. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  693. 'skip': []}),
  694. ('BatchNormGrad', {
  695. 'block': G.BatchNormGrad(),
  696. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
  697. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  698. 'skip': ['backward']}),
  699. ('TopK', {
  700. 'block': P.TopK(),
  701. 'desc_const': [5],
  702. 'desc_inputs': [[20, 20, 10]],
  703. 'desc_bprop': [[20, 20, 5]],
  704. 'skip': ['backward']}),
  705. ('GatherV2_0', {
  706. 'block': P.GatherV2(),
  707. 'desc_const': [0],
  708. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  709. 'desc_bprop': [[2, 1, 2]]}),
  710. ('GatherV2_1', {
  711. 'block': P.GatherV2(),
  712. 'desc_const': [2],
  713. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  714. 'desc_bprop': [[3, 1, 2]]}),
  715. ('GatherV2_2', {
  716. 'block': P.GatherV2(),
  717. 'desc_const': [0],
  718. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  719. 'desc_bprop': [[3, 2, 1, 3]]}),
  720. ('GatherV2_3', {
  721. 'block': P.GatherV2(),
  722. 'desc_const': [2],
  723. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  724. 'desc_bprop': [[3, 1, 3, 2]]}),
  725. ('GatherV2_4', {
  726. 'block': P.GatherV2(),
  727. 'desc_const': [1],
  728. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  729. 'desc_bprop': [[32, 1, 1024]]}),
  730. ('GatherV2_5', {
  731. 'block': P.GatherV2(),
  732. 'desc_const': [-1],
  733. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  734. 'desc_bprop': [[3, 1, 2]]}),
  735. ('GatherV2_6', {
  736. 'block': P.GatherV2(),
  737. 'desc_const': [0],
  738. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  739. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  740. ('UnsortedSegmentSum', {
  741. 'block': P.UnsortedSegmentSum(),
  742. 'desc_const': [1280],
  743. 'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
  744. 'desc_bprop': [[8192, 1024]],
  745. 'skip': ['backward']}),
  746. ('UnsortedSegmentSum_1', {
  747. 'block': P.UnsortedSegmentSum(),
  748. 'desc_const': [4],
  749. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  750. 'desc_bprop': [[4, 1, 3]],
  751. 'skip': ['backward']}),
  752. ('UnsortedSegmentMin', {
  753. 'block': P.UnsortedSegmentMin(),
  754. 'desc_const': [4],
  755. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([1, 2, 3]).astype(np.int32))],
  756. 'desc_bprop': [[4, 2, 1, 3]]}),
  757. ('DropoutGenMask', {
  758. 'block': P.DropoutGenMask(),
  759. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  760. 'desc_inputs': [],
  761. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  762. 'skip': ['backward']}),
  763. ('DropoutDoMask', {
  764. 'block': P.DropoutDoMask(),
  765. 'desc_const': [Tensor(0.5)],
  766. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  767. 'desc_bprop': [[64, 12, 128, 128]]}),
  768. ('Dropout', {
  769. 'block': nn.Dropout(0.5),
  770. 'desc_inputs': [[64, 12, 128, 128]],
  771. 'desc_bprop': [[64, 12, 128, 128]]}),
  772. ('ReduceMean0', {
  773. 'block': P.ReduceMean(),
  774. 'desc_const': [(2,)],
  775. 'desc_inputs': [[3, 2, 2]],
  776. 'desc_bprop': [[3, 2]]}),
  777. ('ReduceMean1', {
  778. 'block': P.ReduceMean(),
  779. 'desc_const': [2],
  780. 'desc_inputs': [[3, 2, 2]],
  781. 'desc_bprop': [[3, 2]]}),
  782. ('All', {
  783. 'block': P.ReduceAll(),
  784. 'desc_const': [(1,)],
  785. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  786. 'desc_bprop': [[3]],
  787. 'skip': ['backward']}),
  788. ('DescConst', {
  789. 'block': Tensor(np.array([2], np.float32)),
  790. 'desc_inputs': [],
  791. 'desc_bprop': [[1]],
  792. 'skip': ['backward'],
  793. 'add_fake_input': True}),
  794. ('Fill', {
  795. 'block': P.Fill(),
  796. 'desc_const': [mstype.float32, (2, 3), 1.0],
  797. 'desc_inputs': [],
  798. 'desc_bprop': [[2, 3]],
  799. 'skip': ['backward'],
  800. 'add_fake_input': True}),
  801. ('OnesLike', {
  802. 'block': P.OnesLike(),
  803. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  804. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  805. }),
  806. ('ZerosLike', {
  807. 'block': P.ZerosLike(),
  808. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  809. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  810. }),
  811. ('Softmax', {
  812. 'block': P.Softmax(),
  813. 'desc_inputs': [[5, 5]],
  814. 'desc_bprop': [[5, 5]]}),
  815. ('DepthwiseConv2dNative_1', {
  816. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  817. 'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
  818. 'desc_bprop': [[10, 32, 16, 16]]}),
  819. ('DepthwiseConv2dNative_2', {
  820. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  821. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  822. 'desc_bprop': [[2592, 2048, 4, 4]]}),
  823. ('SigmoidCrossEntropyWithLogits', {
  824. 'block': P.SigmoidCrossEntropyWithLogits(),
  825. 'desc_inputs': [[128, 10], [128, 10]],
  826. 'desc_bprop': [[128, 10]]}),
  827. ('Pad', {
  828. 'block': P.Pad(((1, 2), (2, 3))),
  829. 'desc_inputs': [[7, 7]],
  830. 'desc_bprop': [[10, 12]]}),
  831. ('BinaryCrossEntropy', {
  832. 'block': P.BinaryCrossEntropy(),
  833. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  834. 'desc_bprop': []}),
  835. ('SparseApplyAdagrad', {
  836. 'block': P.SparseApplyAdagrad(0.5),
  837. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  838. 'skip': ['backward']}),
  839. ('Flatten_1', {
  840. 'block': NetForFlatten(),
  841. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  842. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  843. 'skip': ['backward']}),
  844. ('Flatten_2', {
  845. 'block': NetForFlatten(),
  846. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  847. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  848. 'skip': ['backward']}),
  849. ('Flatten_3', {
  850. 'block': NetForFlattenComposed(),
  851. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  852. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  853. 'skip': []}),
  854. ('ArgmaxNet', {
  855. 'block': ArgmaxNet(),
  856. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  857. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  858. 'skip': ['backward']}),
  859. ('ArgminNet', {
  860. 'block': ArgminNet(),
  861. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  862. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  863. 'skip': ['backward']}),
  864. ('OneHot', {
  865. 'block': P.OneHot(),
  866. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  867. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  868. 'desc_bprop': [[1, 3]]}),
  869. ('ReduceProd_0', {
  870. 'block': P.ReduceProd(),
  871. 'desc_const': [0],
  872. 'desc_inputs': [[3, 2]],
  873. 'desc_bprop': [[2]]}),
  874. ('ReduceProd_1', {
  875. 'block': P.ReduceProd(keep_dims=True),
  876. 'desc_const': [0],
  877. 'desc_inputs': [[3, 2]],
  878. 'desc_bprop': [[1, 2]]}),
  879. ('CumProd', {
  880. 'block': P.CumProd(),
  881. 'desc_const': [0],
  882. 'desc_inputs': [[3, 2]],
  883. 'desc_bprop': [[3, 2]]}),
  884. ('ApplyFtrl', {
  885. 'block': ApplyFtrlNet(),
  886. 'desc_inputs': [[3, 3]],
  887. 'desc_bprop': [3, 3],
  888. 'skip': ['backward']}),
  889. ('ApplyRMSProp', {
  890. 'block': ApplyRMSNet(),
  891. 'desc_inputs': [[3, 3]],
  892. 'desc_bprop': [3, 3],
  893. 'skip': ['backward']}),
  894. ('ApplyCenteredRMSProp', {
  895. 'block': P.ApplyCenteredRMSProp(),
  896. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  897. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  898. 'desc_bprop': [3, 3],
  899. 'skip': ['backward']}),
  900. ('CTCLoss', {
  901. 'block': P.CTCLoss(),
  902. 'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)),
  903. Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)),
  904. Tensor(np.array([1, 2, 3, 4]).astype(np.int32)),
  905. Tensor(np.array([6, 6, 6, 6]).astype(np.int32))],
  906. 'desc_bprop': [[4], [6, 4, 6]]}),
  907. ('L2Loss_1', {
  908. 'block': P.L2Loss(),
  909. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
  910. 'desc_bprop': []}),
  911. ('L2Loss_2', {
  912. 'block': P.L2Loss(),
  913. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  914. 'desc_bprop': []}),
  915. ('ResizeBilinear', {
  916. 'block': P.ResizeBilinear((5, 5)),
  917. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)],
  918. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mstype.float16)]}),
  919. ('ResizeBilinearGrad', {
  920. 'block': G.ResizeBilinearGrad(),
  921. 'desc_inputs': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32), Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  922. 'desc_bprop': [Tensor([[[[1, 2, 3, 4, 5]]]], mstype.float32)],
  923. 'skip': ['backward']}),
  924. ('ROIAlign', {
  925. 'block': P.ROIAlign(7, 7, 0.03125, 2),
  926. 'desc_inputs': [[2, 256, 192, 320], [1024, 5]],
  927. 'desc_bprop': [[7, 7]]}),
  928. ('ROIAlignGrad', {
  929. 'block': G.ROIAlignGrad((1, 1, 1, 1), 2, 2, 0.5, 2),
  930. 'desc_inputs': [[1, 1, 2, 2], [1, 5]],
  931. 'desc_bprop': [[1, 1, 2, 2]],
  932. 'skip': ['backward']}),
  933. ('LARSUpdate', {
  934. 'block': P.LARSUpdate(1e-05, 0.001, False),
  935. 'desc_const': [0.0, 0.001],
  936. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  937. 'desc_bprop': [3, 3],
  938. 'skip': ['backward']}),
  939. ('SGD', {
  940. 'block': P.SGD(0.0, 0.0, False),
  941. 'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
  942. 'desc_bprop': [3, 3],
  943. 'skip': ['backward']}),
  944. ('BinaryCrossEntropy', {
  945. 'block': P.BinaryCrossEntropy(),
  946. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  947. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
  948. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  949. 'desc_bprop': []}),
  950. ('BinaryCrossEntropyGrad', {
  951. 'block': G.BinaryCrossEntropyGrad(),
  952. 'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
  953. Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
  954. Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
  955. 'desc_bprop': [],
  956. 'skip': ['backward']}),
  957. ]
  958. test_case_array_ops = [
  959. ('SpaceToDepth', {
  960. 'block': P.SpaceToDepth(2),
  961. 'desc_inputs': [[1, 3, 2, 2]],
  962. 'desc_bprop': [[1, 12, 1, 1]]}),
  963. ('DepthToSpace', {
  964. 'block': P.DepthToSpace(2),
  965. 'desc_inputs': [[1, 12, 1, 1]],
  966. 'desc_bprop': [[1, 3, 2, 2]]}),
  967. ('Split', {
  968. 'block': P.Split(1, 2),
  969. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  970. 'skip': ['backward']}),
  971. ('Argmax', {
  972. 'block': P.Argmax(),
  973. 'desc_inputs': [[128, 32, 32, 64]],
  974. 'desc_bprop': [0],
  975. 'skip': ['backward']}),
  976. ('Argmin', {
  977. 'block': P.Argmin(),
  978. 'desc_inputs': [[128, 32, 32, 64]],
  979. 'desc_bprop': [1],
  980. 'skip': ['backward']}),
  981. ('ArgMaxWithValue', {
  982. 'block': P.ArgMaxWithValue(),
  983. 'desc_inputs': [[128, 32, 32, 64]],
  984. 'desc_bprop': [[1], [1]],
  985. 'skip': ['backward']}),
  986. ('ArgMinWithValue', {
  987. 'block': P.ArgMinWithValue(),
  988. 'desc_inputs': [[128, 32, 32, 64]],
  989. 'desc_bprop': [[1], [1]],
  990. 'skip': ['backward']}),
  991. ('Transpose_dim3', {
  992. 'block': P.Transpose(),
  993. 'desc_const': [(0, 2, 1)],
  994. 'desc_inputs': [[1, 2, 3]],
  995. 'desc_bprop': [[1, 3, 2]]}),
  996. ('Transpose_dim4', {
  997. 'block': P.Transpose(),
  998. 'desc_const': [(0, 1, 2, 3)],
  999. 'desc_inputs': [[1, 2, 3, 4]],
  1000. 'desc_bprop': [[1, 2, 4, 3]]}),
  1001. ('AddN', {
  1002. 'block': NetForTupleInput(P.AddN()),
  1003. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  1004. 'desc_bprop': [[2, 3, 3, 5]],
  1005. 'skip': ['backward']}),
  1006. ('Shape', {
  1007. 'block': P.Shape(),
  1008. 'desc_inputs': [[3, 3, 2, 2]],
  1009. 'skip': ['backward']}),
  1010. ('Reshape', {
  1011. 'block': P.Reshape(),
  1012. 'desc_const': [(64,)],
  1013. 'desc_inputs': [[64, 1]],
  1014. 'desc_bprop': [[64]]}),
  1015. ('Cast', {
  1016. 'block': P.Cast(),
  1017. 'desc_const': [mstype.int32],
  1018. 'desc_inputs': [[2, 3, 4, 5]],
  1019. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
  1020. ('ExpandDims', {
  1021. 'block': P.ExpandDims(),
  1022. 'desc_const': [0],
  1023. 'desc_inputs': [[2, 2]],
  1024. 'desc_bprop': [[1, 2, 2]]}),
  1025. ('ExpandDims_1', {
  1026. 'block': P.ExpandDims(),
  1027. 'desc_const': [-1],
  1028. 'desc_inputs': [[2, 2]],
  1029. 'desc_bprop': [[2, 2, 1]]}),
  1030. ('Squeeze', {
  1031. 'block': P.Squeeze(2),
  1032. 'desc_inputs': [[3, 2, 1]],
  1033. 'desc_bprop': [[3, 2]]}),
  1034. ('Squeeze_0', {
  1035. 'block': P.Squeeze(),
  1036. 'desc_inputs': [[3, 1, 2, 1]],
  1037. 'desc_bprop': [[3, 2]]}),
  1038. ('Squeeze_1', {
  1039. 'block': P.Squeeze(),
  1040. 'desc_inputs': [[1, 1, 1, 1]],
  1041. 'desc_bprop': [1.0],
  1042. 'skip': ['backward']}),
  1043. ('Squeeze_2', {
  1044. 'block': P.Squeeze((2, 3)),
  1045. 'desc_inputs': [[3, 2, 1, 1]],
  1046. 'desc_bprop': [[3, 2]]}),
  1047. ('Size', {
  1048. 'block': P.Size(),
  1049. 'desc_inputs': [[2, 3, 5]],
  1050. 'skip': ['backward']}),
  1051. ('Tile_0', {
  1052. 'block': P.Tile(),
  1053. 'desc_const': [(1, 2)],
  1054. 'desc_inputs': [[64, 1]],
  1055. 'desc_bprop': [[64, 2]]}),
  1056. ('Tile_1', {
  1057. 'block': P.Tile(),
  1058. 'desc_const': [(1, 1)],
  1059. 'desc_inputs': [[64, 1]],
  1060. 'desc_bprop': [[64, 1]]}),
  1061. ('Tile_2', {
  1062. 'block': P.Tile(),
  1063. 'desc_const': [(2, 1, 1, 2)],
  1064. 'desc_inputs': [[2, 2, 2]],
  1065. 'desc_bprop': [[2, 2, 2, 4]]}),
  1066. ('ConcatV2_0', {
  1067. 'block': P.Concat(),
  1068. 'desc_inputs': [
  1069. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  1070. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  1071. 'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
  1072. ('ConcatV2_1', {
  1073. 'block': P.Concat(axis=2),
  1074. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  1075. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  1076. 'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
  1077. ('ConcatV2_2', {
  1078. 'block': NetForConcat(),
  1079. 'desc_inputs': [[2, 2]],
  1080. 'desc_bprop': [[4, 2]]}),
  1081. ('ConcatV2_3', {
  1082. 'block': NetForConcat1(),
  1083. 'desc_inputs': [[2, 2], [2, 2]],
  1084. 'desc_bprop': [[4, 2]]}),
  1085. ('ConcatV2_4', {
  1086. 'block': P.Concat(axis=0),
  1087. 'desc_inputs': [
  1088. (Tensor(np.ones((3, 2, 3), np.float32)),
  1089. Tensor(np.ones((5, 2, 3), np.float32)),
  1090. Tensor(np.ones((6, 2, 3), np.float32)))],
  1091. 'desc_bprop': [[14, 2, 3]]}),
  1092. ('ConcatV2_5', {
  1093. 'block': P.Concat(axis=-1),
  1094. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  1095. Tensor(np.array([1], np.float32)),
  1096. Tensor(np.array([1], np.float32)))],
  1097. 'desc_bprop': [[3, ]]}),
  1098. ('Pack_0', {
  1099. 'block': NetForPackInput(P.Pack()),
  1100. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  1101. 'desc_bprop': [[3, 2, 2]],
  1102. }),
  1103. ('Pack_1', {
  1104. 'block': NetForPackInput(P.Pack(axis=-2)),
  1105. 'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  1106. 'desc_bprop': [[3, 2, 3, 3]],
  1107. }),
  1108. ('Pack_2', {
  1109. 'block': NetForPackInput(P.Pack()),
  1110. 'desc_inputs': [[128, 128], [128, 128]],
  1111. 'desc_bprop': [[2, 128, 128]],
  1112. }),
  1113. ('Unpack_0', {
  1114. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1115. 'desc_inputs': [[2, 4]],
  1116. 'desc_bprop': [[4], [4]],
  1117. }),
  1118. ('Unpack_1', {
  1119. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1120. 'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
  1121. 'desc_bprop': [[1], [1], [1]],
  1122. }),
  1123. ('Diag_1', {
  1124. 'block': P.Diag(),
  1125. 'desc_inputs': [[4]],
  1126. 'desc_bprop': [[4, 4]],
  1127. }),
  1128. ('Diag_2', {
  1129. 'block': P.Diag(),
  1130. 'desc_inputs': [[4, 4]],
  1131. 'desc_bprop': [[4, 4, 4, 4]],
  1132. }),
  1133. ('DiagPart_1', {
  1134. 'block': P.DiagPart(),
  1135. 'desc_inputs': [[4, 4]],
  1136. 'desc_bprop': [[4]],
  1137. }),
  1138. ('DiagPart_2', {
  1139. 'block': P.DiagPart(),
  1140. 'desc_inputs': [[4, 4, 4, 4]],
  1141. 'desc_bprop': [[4, 4]],
  1142. }),
  1143. ('SpaceToBatch_1', {
  1144. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1145. 'desc_inputs': [[1, 3, 2, 2]],
  1146. 'desc_bprop': [[4, 3, 1, 1]],
  1147. }),
  1148. ('SpaceToBatch_2', {
  1149. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1150. 'desc_inputs': [[1, 3, 2, 2]],
  1151. 'desc_bprop': [[4, 3, 2, 3]],
  1152. }),
  1153. ('BatchToSpace_1', {
  1154. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1155. 'desc_inputs': [[4, 3, 1, 1]],
  1156. 'desc_bprop': [[1, 3, 2, 2]],
  1157. }),
  1158. ('BatchToSpace_2', {
  1159. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1160. 'desc_inputs': [[4, 3, 1, 1]],
  1161. 'desc_bprop': [[1, 3, 2, 1]],
  1162. }),
  1163. ]
  1164. test_case_other_ops = [
  1165. ('ScalarLog', {
  1166. 'block': F.scalar_log,
  1167. 'desc_const': [0.0],
  1168. 'desc_inputs': [],
  1169. 'desc_bprop': [1],
  1170. 'skip': ['backward']}),
  1171. ('BoundingBoxEncode', {
  1172. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1173. 'desc_inputs': [[256, 4], [256, 4]],
  1174. 'desc_bprop': [[256, 4]],
  1175. 'skip': ['backward']}),
  1176. ('BoundingBoxDecode', {
  1177. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1178. 'desc_inputs': [[256, 4], [256, 4]],
  1179. 'desc_bprop': [[256, 4]],
  1180. 'skip': ['backward']}),
  1181. ('GatherNd', {
  1182. 'block': P.GatherNd(),
  1183. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1184. Tensor(np.ones((2, 4), np.int32))),
  1185. 'desc_bprop': [[2]]}),
  1186. ('ScatterNd', {
  1187. 'block': P.ScatterNd(),
  1188. 'desc_const': [(3, 3)],
  1189. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1190. Tensor(np.ones((2,), np.int32))),
  1191. 'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
  1192. ('ScatterMax', {
  1193. 'block': ScatterMax(),
  1194. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1195. Tensor(np.ones([2, 2, 3], np.float32) * 99)),
  1196. 'skip': ['backward']}),
  1197. ('SmoothL1Loss', {
  1198. 'block': P.SmoothL1Loss(),
  1199. 'desc_inputs': [[256, 4], [256, 4]],
  1200. 'desc_bprop': [[256, 4]]}),
  1201. ('IOU', {
  1202. 'block': P.IOU(),
  1203. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1204. 'desc_bprop': [[128, 256]]}),
  1205. ('Summary', {
  1206. 'block': SummaryNet(),
  1207. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1208. Tensor(np.array([1.2]).astype(np.float32))],
  1209. 'skip': ['backward']}),
  1210. ('ConfusionMulGrad_1', {
  1211. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
  1212. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1213. 'desc_bprop': [[3, 2], [2]],
  1214. 'skip': ['backward']}),
  1215. ('ConfusionMulGrad_2', {
  1216. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
  1217. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1218. 'desc_bprop': [[3, 2], [1, 2]],
  1219. 'skip': ['backward']}),
  1220. ('ConfusionMulGrad_3', {
  1221. 'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
  1222. 'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
  1223. 'desc_bprop': [[2, 3, 4], [1, 1, 1]],
  1224. 'skip': ['backward']}),
  1225. ('HistogramSummary', {
  1226. 'block': HistogramSummaryNet(),
  1227. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1228. Tensor(np.array([1.2]).astype(np.float32))],
  1229. 'skip': ['backward']}),
  1230. ]
  1231. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1232. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1233. # use -k to select certain testcast
  1234. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1235. test_exec_case = test_case
  1236. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1237. 'backward' not in x[1]['skip'], test_case)
  1238. @non_graph_engine
  1239. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1240. def test_exec():
  1241. context.set_context(mode=context.GRAPH_MODE)
  1242. return test_exec_case
  1243. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1244. def test_backward_exec():
  1245. context.set_context(mode=context.GRAPH_MODE)
  1246. return test_backward_exec_case
  1247. raise_set = [
  1248. ('Cast_Error', {
  1249. 'block': (P.Cast(), {'exception': TypeError}),
  1250. 'desc_const': [mstype.int32],
  1251. 'desc_inputs': ['wrong input'],
  1252. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1253. ('Maximum_Error', {
  1254. 'block': (P.Maximum(), {'exception': TypeError}),
  1255. 'desc_const': [(1, 2, 3)],
  1256. 'desc_inputs': [[2, 3, 3, 5]],
  1257. 'desc_bprop': [[2, 3, 3, 5]]}),
  1258. ('Shape_error', {
  1259. 'block': (P.Shape(), {'exception': TypeError}),
  1260. 'desc_inputs': [(64, 1)],
  1261. 'desc_bprop': [[64]]}),
  1262. ('Flatten_Error', {
  1263. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1264. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1265. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1266. ('ScatterNdUpdate', {
  1267. 'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
  1268. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1269. Tensor(np.ones((2, 2), np.float32)),
  1270. Tensor(np.ones((2,), np.float32))),
  1271. 'desc_bprop': [[2, 3]]}),
  1272. ('Pack', {
  1273. 'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
  1274. 'desc_inputs': [[2, 2]],
  1275. 'desc_bprop': [[1, 2, 2]]}),
  1276. ('PReLU', {
  1277. 'block': (P.PReLU(), {'exception': ValueError}),
  1278. 'desc_inputs': [[2], [1]],
  1279. 'desc_bprop': [[1]]}),
  1280. ]
  1281. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1282. def test_check_exception():
  1283. return raise_set