You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """YoloV3 train."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. from mindspore.context import ParallelMode
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore import Tensor
  23. import mindspore.nn as nn
  24. from mindspore import context
  25. from mindspore.communication.management import init, get_rank, get_group_size
  26. from mindspore.train.callback import ModelCheckpoint, RunContext
  27. from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
  28. import mindspore as ms
  29. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  30. from mindspore import amp
  31. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  32. from mindspore.common import set_seed
  33. from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
  34. from src.logger import get_logger
  35. from src.util import AverageMeter, load_backbone, get_param_groups
  36. from src.lr_scheduler import warmup_step_lr, warmup_cosine_annealing_lr, \
  37. warmup_cosine_annealing_lr_V2, warmup_cosine_annealing_lr_sample
  38. from src.yolo_dataset import create_yolo_dataset
  39. from src.initializer import default_recurisive_init
  40. from src.config import ConfigYOLOV3DarkNet53
  41. from src.util import keep_loss_fp32
  42. set_seed(1)
  43. class BuildTrainNetwork(nn.Cell):
  44. def __init__(self, network, criterion):
  45. super(BuildTrainNetwork, self).__init__()
  46. self.network = network
  47. self.criterion = criterion
  48. def construct(self, input_data, label):
  49. output = self.network(input_data)
  50. loss = self.criterion(output, label)
  51. return loss
  52. def parse_args():
  53. """Parse train arguments."""
  54. parser = argparse.ArgumentParser('mindspore coco training')
  55. # device related
  56. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  57. help='device where the code will be implemented. (Default: Ascend)')
  58. # dataset related
  59. parser.add_argument('--data_dir', type=str, help='Train dataset directory.')
  60. parser.add_argument('--per_batch_size', default=32, type=int, help='Batch size for Training. Default: 32.')
  61. # network related
  62. parser.add_argument('--pretrained_backbone', default='', type=str,
  63. help='The ckpt file of DarkNet53. Default: "".')
  64. parser.add_argument('--resume_yolov3', default='', type=str,
  65. help='The ckpt file of YOLOv3, which used to fine tune. Default: ""')
  66. # optimizer and lr related
  67. parser.add_argument('--lr_scheduler', default='exponential', type=str,
  68. help='Learning rate scheduler, options: exponential, cosine_annealing. Default: exponential')
  69. parser.add_argument('--lr', default=0.001, type=float, help='Learning rate. Default: 0.001')
  70. parser.add_argument('--lr_epochs', type=str, default='220,250',
  71. help='Epoch of changing of lr changing, split with ",". Default: 220,250')
  72. parser.add_argument('--lr_gamma', type=float, default=0.1,
  73. help='Decrease lr by a factor of exponential lr_scheduler. Default: 0.1')
  74. parser.add_argument('--eta_min', type=float, default=0., help='Eta_min in cosine_annealing scheduler. Default: 0')
  75. parser.add_argument('--T_max', type=int, default=320, help='T-max in cosine_annealing scheduler. Default: 320')
  76. parser.add_argument('--max_epoch', type=int, default=320, help='Max epoch num to train the model. Default: 320')
  77. parser.add_argument('--warmup_epochs', default=0, type=float, help='Warmup epochs. Default: 0')
  78. parser.add_argument('--weight_decay', type=float, default=0.0005, help='Weight decay factor. Default: 0.0005')
  79. parser.add_argument('--momentum', type=float, default=0.9, help='Momentum. Default: 0.9')
  80. # loss related
  81. parser.add_argument('--loss_scale', type=int, default=1024, help='Static loss scale. Default: 1024')
  82. parser.add_argument('--label_smooth', type=int, default=0, help='Whether to use label smooth in CE. Default:0')
  83. parser.add_argument('--label_smooth_factor', type=float, default=0.1,
  84. help='Smooth strength of original one-hot. Default: 0.1')
  85. # logging related
  86. parser.add_argument('--log_interval', type=int, default=100, help='Logging interval steps. Default: 100')
  87. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='Checkpoint save location. Default: outputs/')
  88. parser.add_argument('--ckpt_interval', type=int, default=None, help='Save checkpoint interval. Default: None')
  89. parser.add_argument('--is_save_on_master', type=int, default=1,
  90. help='Save ckpt on master or all rank, 1 for master, 0 for all ranks. Default: 1')
  91. # distributed related
  92. parser.add_argument('--is_distributed', type=int, default=1,
  93. help='Distribute train or not, 1 for yes, 0 for no. Default: 1')
  94. parser.add_argument('--rank', type=int, default=0, help='Local rank of distributed. Default: 0')
  95. parser.add_argument('--group_size', type=int, default=1, help='World size of device. Default: 1')
  96. # profiler init
  97. parser.add_argument('--need_profiler', type=int, default=0,
  98. help='Whether use profiler. 0 for no, 1 for yes. Default: 0')
  99. # reset default config
  100. parser.add_argument('--training_shape', type=str, default="", help='Fix training shape. Default: ""')
  101. parser.add_argument('--resize_rate', type=int, default=None,
  102. help='Resize rate for multi-scale training. Default: None')
  103. args, _ = parser.parse_known_args()
  104. if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.T_max:
  105. args.T_max = args.max_epoch
  106. args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
  107. args.data_root = os.path.join(args.data_dir, 'train2014')
  108. args.annFile = os.path.join(args.data_dir, 'annotations/instances_train2014.json')
  109. return args
  110. def conver_training_shape(args):
  111. training_shape = [int(args.training_shape), int(args.training_shape)]
  112. return training_shape
  113. def train():
  114. """Train function."""
  115. args = parse_args()
  116. devid = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
  117. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
  118. device_target=args.device_target, save_graphs=True, device_id=devid)
  119. # init distributed
  120. if args.is_distributed:
  121. if args.device_target == "Ascend":
  122. init()
  123. else:
  124. init("nccl")
  125. args.rank = get_rank()
  126. args.group_size = get_group_size()
  127. # select for master rank save ckpt or all rank save, compatiable for model parallel
  128. args.rank_save_ckpt_flag = 0
  129. if args.is_save_on_master:
  130. if args.rank == 0:
  131. args.rank_save_ckpt_flag = 1
  132. else:
  133. args.rank_save_ckpt_flag = 1
  134. # logger
  135. args.outputs_dir = os.path.join(args.ckpt_path,
  136. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  137. args.logger = get_logger(args.outputs_dir, args.rank)
  138. args.logger.save_args(args)
  139. if args.need_profiler:
  140. from mindspore.profiler.profiling import Profiler
  141. profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)
  142. loss_meter = AverageMeter('loss')
  143. context.reset_auto_parallel_context()
  144. if args.is_distributed:
  145. parallel_mode = ParallelMode.DATA_PARALLEL
  146. degree = get_group_size()
  147. else:
  148. parallel_mode = ParallelMode.STAND_ALONE
  149. degree = 1
  150. context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree)
  151. network = YOLOV3DarkNet53(is_training=True)
  152. # default is kaiming-normal
  153. default_recurisive_init(network)
  154. if args.pretrained_backbone:
  155. network = load_backbone(network, args.pretrained_backbone, args)
  156. args.logger.info('load pre-trained backbone {} into network'.format(args.pretrained_backbone))
  157. else:
  158. args.logger.info('Not load pre-trained backbone, please be careful')
  159. if args.resume_yolov3:
  160. param_dict = load_checkpoint(args.resume_yolov3)
  161. param_dict_new = {}
  162. for key, values in param_dict.items():
  163. if key.startswith('moments.'):
  164. continue
  165. elif key.startswith('yolo_network.'):
  166. param_dict_new[key[13:]] = values
  167. args.logger.info('in resume {}'.format(key))
  168. else:
  169. param_dict_new[key] = values
  170. args.logger.info('in resume {}'.format(key))
  171. args.logger.info('resume finished')
  172. load_param_into_net(network, param_dict_new)
  173. args.logger.info('load_model {} success'.format(args.resume_yolov3))
  174. network = YoloWithLossCell(network)
  175. args.logger.info('finish get network')
  176. config = ConfigYOLOV3DarkNet53()
  177. config.label_smooth = args.label_smooth
  178. config.label_smooth_factor = args.label_smooth_factor
  179. if args.training_shape:
  180. config.multi_scale = [conver_training_shape(args)]
  181. if args.resize_rate:
  182. config.resize_rate = args.resize_rate
  183. ds, data_size = create_yolo_dataset(image_dir=args.data_root, anno_path=args.annFile, is_training=True,
  184. batch_size=args.per_batch_size, max_epoch=args.max_epoch,
  185. device_num=args.group_size, rank=args.rank, config=config)
  186. args.logger.info('Finish loading dataset')
  187. args.steps_per_epoch = int(data_size / args.per_batch_size / args.group_size)
  188. if not args.ckpt_interval:
  189. args.ckpt_interval = args.steps_per_epoch
  190. # lr scheduler
  191. if args.lr_scheduler == 'exponential':
  192. lr = warmup_step_lr(args.lr,
  193. args.lr_epochs,
  194. args.steps_per_epoch,
  195. args.warmup_epochs,
  196. args.max_epoch,
  197. gamma=args.lr_gamma,
  198. )
  199. elif args.lr_scheduler == 'cosine_annealing':
  200. lr = warmup_cosine_annealing_lr(args.lr,
  201. args.steps_per_epoch,
  202. args.warmup_epochs,
  203. args.max_epoch,
  204. args.T_max,
  205. args.eta_min)
  206. elif args.lr_scheduler == 'cosine_annealing_V2':
  207. lr = warmup_cosine_annealing_lr_V2(args.lr,
  208. args.steps_per_epoch,
  209. args.warmup_epochs,
  210. args.max_epoch,
  211. args.T_max,
  212. args.eta_min)
  213. elif args.lr_scheduler == 'cosine_annealing_sample':
  214. lr = warmup_cosine_annealing_lr_sample(args.lr,
  215. args.steps_per_epoch,
  216. args.warmup_epochs,
  217. args.max_epoch,
  218. args.T_max,
  219. args.eta_min)
  220. else:
  221. raise NotImplementedError(args.lr_scheduler)
  222. opt = Momentum(params=get_param_groups(network),
  223. learning_rate=Tensor(lr),
  224. momentum=args.momentum,
  225. weight_decay=args.weight_decay,
  226. loss_scale=args.loss_scale)
  227. enable_amp = False
  228. is_gpu = context.get_context("device_target") == "GPU"
  229. if is_gpu:
  230. enable_amp = True
  231. if enable_amp:
  232. loss_scale_value = 1.0
  233. loss_scale = FixedLossScaleManager(loss_scale_value, drop_overflow_update=False)
  234. network = amp.build_train_network(network, optimizer=opt, loss_scale_manager=loss_scale,
  235. level="O2", keep_batchnorm_fp32=True)
  236. keep_loss_fp32(network)
  237. else:
  238. network = TrainingWrapper(network, opt)
  239. network.set_train()
  240. if args.rank_save_ckpt_flag:
  241. # checkpoint save
  242. ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
  243. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
  244. keep_checkpoint_max=ckpt_max_num)
  245. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  246. directory=args.outputs_dir,
  247. prefix='{}'.format(args.rank))
  248. cb_params = _InternalCallbackParam()
  249. cb_params.train_network = network
  250. cb_params.epoch_num = ckpt_max_num
  251. cb_params.cur_epoch_num = 1
  252. run_context = RunContext(cb_params)
  253. ckpt_cb.begin(run_context)
  254. old_progress = -1
  255. t_end = time.time()
  256. data_loader = ds.create_dict_iterator(output_numpy=True)
  257. for i, data in enumerate(data_loader):
  258. images = data["image"]
  259. input_shape = images.shape[2:4]
  260. args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
  261. images = Tensor.from_numpy(images)
  262. batch_y_true_0 = Tensor.from_numpy(data['bbox1'])
  263. batch_y_true_1 = Tensor.from_numpy(data['bbox2'])
  264. batch_y_true_2 = Tensor.from_numpy(data['bbox3'])
  265. batch_gt_box0 = Tensor.from_numpy(data['gt_box1'])
  266. batch_gt_box1 = Tensor.from_numpy(data['gt_box2'])
  267. batch_gt_box2 = Tensor.from_numpy(data['gt_box3'])
  268. input_shape = Tensor(tuple(input_shape[::-1]), ms.float32)
  269. loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,
  270. batch_gt_box2, input_shape)
  271. loss_meter.update(loss.asnumpy())
  272. if args.rank_save_ckpt_flag:
  273. # ckpt progress
  274. cb_params.cur_step_num = i + 1 # current step number
  275. cb_params.batch_num = i + 2
  276. ckpt_cb.step_end(run_context)
  277. if i % args.log_interval == 0:
  278. time_used = time.time() - t_end
  279. epoch = int(i / args.steps_per_epoch)
  280. fps = args.per_batch_size * (i - old_progress) * args.group_size / time_used
  281. if args.rank == 0:
  282. args.logger.info(
  283. 'epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr:{}'.format(epoch, i, loss_meter, fps, lr[i]))
  284. t_end = time.time()
  285. loss_meter.reset()
  286. old_progress = i
  287. if (i + 1) % args.steps_per_epoch == 0 and args.rank_save_ckpt_flag:
  288. cb_params.cur_epoch_num += 1
  289. if args.need_profiler:
  290. if i == 10:
  291. profiler.analyse()
  292. break
  293. args.logger.info('==========end training===============')
  294. if __name__ == "__main__":
  295. train()